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Confidence Intervals

Confidence Intervals: Confidence intervals are used to capture a population parameter
(population mean, population proportion, etc.) with some chosen degree of confidence. The
general form for a confidence interval is given by:

(point estimate) ± (critical value) (standard error)

• The point estimate is the sample statistic (sample mean, sample proportion, etc.) corre-
sponding to the desired population parameter.

• The critical value is determined by the desired confidence level.
• The standard error is a measure quantifying variability in the estimate.

Approximate 95% Confidence Interval: We’ll often use an approximate 95% confidence
interval. In this case we replace the critical value by 2, so the form is given by:

(point estimate) ± 2 (standard error)

We can interpret the interval by stating: “We are about 95% confident that [population
parameter] is between [lower bound] and [upper bound].”
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An Example: A study to determine whether the appearance of adverse side effects from a
drug is dependent on gender looked at the frequency of these side effects appearing in males
and females. A point estimate for the difference in proportions (pmales − pfemales) resulted in
a point estimate of 0.075 with a standard error of 0.04. Use an approximate 95% confidence
interval to determine if there is evidence to suggest that negative side effects from this drug
occur more often in males.

Hypothesis Tests

Hypothesis Testing: A hypothesis test is a method for testing statements about population
parameters. Our hypotheses typically will look like one of the following:

H0 : β1 = β2 = ... = βk = 0
Ha : at least one βi is non-zero

H0 : βi = 0
Ha : βi ̸= 0

The hypotheses on the left reflect a Global Test for Model Utility (to determine whether the
model has any utility at all), while the hypotheses on the right reflect tests for significance of
individual predictors. The result of a hypothesis test depends on a p-value. If p < α, then we
reject H0 and accept Ha. If p ≥ α, then we do not have enough evidence to reject H0. We
usually use α = .05, but we can set different thresholds for different applications.

For us, rejecting the null hypothesis will typically mean that a model, or particular predictor,
has some value.

Example I: A model is built to predict salary of city workers given years of service. The
hypothesized model assumes a linear relationship between the response and predictor. That is,
E [salary] = β0 + β1 · (years of service). The p-value reported for a global test of model utility
was 0.003. Write the hypotheses for the test and determine the conclusion and its meaning.

Example II: A more complex model to predict salary included many potential predictors.
One such predictor was years of education (beyond high school). The estimated coefficient
on this predictor was 475 with a standard error of 110. Write the hypotheses involved in a
test for the significance of this predictor and determine the result of the test. What does this
mean?

Simple Regression Models and “The Big Idea”

Definition (Simple Regression): A simple regression model is a model of the form E [y] =
β0 + β1x, where y is called the response variable and x is a predictor variable.
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p1 <- penguins_train %>%
ggplot() +
geom_point(aes(x = bill_depth_mm, y = body_mass_g)) +
geom_smooth(aes(x = bill_depth_mm, y = body_mass_g),

method = "lm", se = FALSE, color = "blue") +
labs(x = "Bill Depth (mm)",

y = "Body Mass (g)",
title = "Predicting Body Mass \nwith Bill Depth")

p2 <- penguins_train %>%
ggplot() +
geom_point(aes(x = flipper_length_mm, y = body_mass_g)) +
geom_smooth(aes(x = flipper_length_mm, y = body_mass_g),

method = "lm", se = FALSE, color = "red") +
labs(x = "Flipper Length (mm)",

y = "Body Mass (g)",
title = "Predicting Body Mass \nwith Flipper Length")

p1 / p2

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

`geom_smooth()` using formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite outside the scale range (`stat_smooth()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
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Reading Regression Output

Consider the simple regression output below for predicting selling body_mass_g of a penguin
with flipper_length_mm as the sole predictor.

mass_flipper_spec <- linear_reg() %>%
set_engine("lm")

mass_flipper_rec <- recipe(body_mass_g ~ flipper_length_mm, data = penguins_train)

mass_flipper_wf <- workflow() %>%
add_model(mass_flipper_spec) %>%
add_recipe(mass_flipper_rec)

mass_flipper_fit <- mass_flipper_wf %>%
fit(penguins_train)

mass_flipper_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
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0.7646157 0.763689 398.8774 825.0863 0 1 -1895.34 3796.68 3807.315 40412211 254 256

mass_flipper_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value
Intercept -5768.75714 348.042020 -16.57489 0
flipper_length_mm 49.67168 1.729255 28.72431 0

Testing For Model Utility: Proposed form of the model,

E [body_mass] = β0 + β1 · flipper_length

The hypotheses for a global test of model utility are as follows:

H0 : β1 = 0
Ha : β1 ̸= 0 or H0 : Flipper length is not a significant predictor of price

Ha : Flipper length is a significant predictor of price

We can find the p-value given for the model as a whole from the results of glance() on our
fitted model. That p-value is 9.388e − 82 (that’s really small!), and so we reject H0, and claim
that our model is useful. We won’t always glance() at our models, but doing so can be really
helpful, especially in the case where you are suspicious of coefficients and p-values for your
individual predictors.

Testing for Significance of Individual Predictors: Since we built a simple linear regression
model, there is only one predictor. That means that the global test of model utility tested the
same hypotheses as a test for significance of flipper_length_mm as an individual predictor.
Notice that the p-value for the global test of model utility matches the p-value associated
with the flipper_length_mm predictor. This won’t be the case once we begin adding more
predictors to our models.

Using and Interpreting a Model: Since our model to predict the body mass of a penguin
depending on the length of the penguin’s flipper was significant, let’s use it! Note that the
model we computed is:

E [price] = −5768.76 + 49.67 · flipper_length_mm

1. Estimate the body mass for a penguin whose flipper_length_mm is 200mm.
2. Interpret the intercept for the model, and comment on whether or not it makes sense.
3. Give an interpretation of the coefficient on flipper_length_mm.
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What if we wanted to use more than one predictor simultaneously to predict body mass? Could
we find a “better” model?

Multiple Regression Models

Definition (Multiple Regression Models): Regression models that include more than one
independent (predictor) variable are called multiple regression models.

Definition (General Form for a Multiple Regression Model):

y = β0 + β1x1 + β2x2 + · · · + βkxk + ε

where y is the dependent (response) variable, while x1, . . . , xk are the independent (predictor)
variables. The model which omits the error term,

E [y] = β0 + β1x1 + β2x2 + · · · + βkxk

is called the deterministic portion of the model. We will work exclusively with the deterministic
portion of the model throughout much this course.

Note that in the general form of the multiple regression model, we may include higher order
terms (like x2

i ), or mixed terms (like xixj), or even terms for qualitative predictors! Models
that include higher-order or interaction terms still fall under the category of linear regression.
We’ll consider these terms later in our course.

Consider the regression output below for a model which predicts the body mass of a penguin
given several of the numerical predictors available in the penguins data set.

mass_multi_spec <- linear_reg() %>%
set_engine("lm")

mass_multi_rec <- recipe(body_mass_g ~ bill_length_mm + bill_depth_mm + flipper_length_mm + year, data = penguins_train)

mass_multi_wf <- workflow() %>%
add_model(mass_multi_spec) %>%
add_recipe(mass_multi_rec)

mass_multi_fit <- mass_multi_wf %>%
fit(penguins_train)

mass_multi_fit %>%
glance() %>%
kable() %>%
kable_styling()
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r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.7808404 0.7773478 387.1782 223.571 0 4 -1886.198 3784.396 3805.667 37626655 251 256

mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value
Intercept 232658.774875 60591.365347 3.8398008 0.0001560
bill_length_mm 1.530334 5.984567 0.2557134 0.7983815
bill_depth_mm 28.587515 15.997312 1.7870199 0.0751409
flipper_length_mm 52.753150 2.783871 18.9495697 0.0000000
year -119.323909 30.224297 -3.9479466 0.0001024

Analyzing Multiple Regression Results: We would like to analyze our models on two
levels: (i) global model metrics, and (ii) efficacy/significance of individual predictors and model
terms. We can obtain global measures of model performance by piping our fitted model to
glance(), while we can obtain measures related to individual model terms by piping our fitted
model to extract_fit_engine() and tidy(). We’ll go through the results below.

• Global Model Metrics with mass_multi_fit %>% glance()

– The r.squared and adj.r.squared values are used to evaluate the proportion of
variation in the response variable which is explained by our model. We use r.squared
when dealing with simple regression, and adj.r.squared for multiple regression.

– The r.squared and adj.r.squared values are measures of model fit, for which
values closer to 1 are better.

– We should be suspicious of values too close to 1 though!

– The sigma value is the residual standard error for our model. It is related to the
standard error of the prediction errors our model makes.

∗ The sigma value is a measure of model fit, for which lower values are better.
∗ We can use sigma to build approximate confidence intervals for our model’s

predictions. We can say that we expect our model’s predictions to be accurate
to within about ±2sigma. We’ll see better ways to build these intervals though.
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– The statistic and p.value are the computed test statistic and p-value for our
global test for model utility.

H0 : β1 = β2 = β3 = β4 = 0
Ha : At least one of the coefficients is not 0

– The logLik, AIC, BIC, and deviance are alternative measures of model significance,
based in information theory. We won’t utilize these metrics.

– The df.residual is the number of observations which are utilized to estimate the
residual standard error (sigma). The df earlier in the table is the number of β
coefficients attached to variable terms in your model.

– The nobs column indicates the number of observations used to fit your model.

– Note: When we run these global analyses, we’ll care most about adj.r.squared,
sigma, p.value, and df.residuals.

mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value
Intercept 232658.774875 60591.365347 3.8398008 0.0001560
bill_length_mm 1.530334 5.984567 0.2557134 0.7983815
bill_depth_mm 28.587515 15.997312 1.7870199 0.0751409
flipper_length_mm 52.753150 2.783871 18.9495697 0.0000000
year -119.323909 30.224297 -3.9479466 0.0001024

• Model Term Metrics with mass_multi_fit %>% extract_fit_engine() %>% tidy()

– The term column describes the term in our model – here the individual predictors.

– The estimate gives the estimated β coefficient from the model-fitting process.

– The std.error column gives the standard errors on the β estimates. This is useful
for constructing confidence intervals for your estimates or for identifying problems
with the regression.
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– The statistic column gives the test statistic for a hypothesis test of the form

H0 : βi = 0
Ha : βi ̸= 0

where βi is the coefficient attached to the corresponding predictor.

– The p.value column gives the p-value for the test mentioned above.

Completed Example: Consider the multiple regression output below for our multiple linear
regression model which uses bill_length_mm, bill_depth_mm, flipper_length_mm and year
to predict the body_mass_g of a penguin.

mass_multi_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.7808404 0.7773478 387.1782 223.571 0 4 -1886.198 3784.396 3805.667 37626655 251 256

mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value
Intercept 232658.774875 60591.365347 3.8398008 0.0001560
bill_length_mm 1.530334 5.984567 0.2557134 0.7983815
bill_depth_mm 28.587515 15.997312 1.7870199 0.0751409
flipper_length_mm 52.753150 2.783871 18.9495697 0.0000000
year -119.323909 30.224297 -3.9479466 0.0001024

Analyzing the Regression Output: We evaluate the regression model using the steps
below:

• Global Test for Overall Model Utility: We test the hypotheses

H0 : β1 = β2 = β3 = β4 = 0
Ha : At least one of the β’s is non-zero

9



Notice that the p-value associated with this test is 1.82e − 81 (very small), and so we
reject H0, and claim that our overall model has some significance.

• Interpret Adjusted R-Squared: Notice that the value of Adjusted R-squared is .777. This
tells us that approximately “77.7% of the variation in penguin body_mass_g is explained
by our model.”

– Get comfortable with the form of the sentence in quotes above. We will use it quite
often.

– Notice that we are explaining variation in the response, not variance. In statistics,
variance means something very specific.

• Test the significance of individual terms: Here we test each individual term to determine
whether it contributes significantly to the model, or if it should be a candidate for
dropping from the model. In general, we use many t-tests here.

H0 : βi = 0
Ha : βi ̸= 0

notice that the p-values associated with bill_length_mm and bill_depth_mm are not
significant (they exceed 0.05). Since this is the case, we’ll drop the predictor corresponding
to the highest p-value and re-fit our model. This procedure is called backward elimination.

mass_multi_spec <- linear_reg() %>%
set_engine("lm")

mass_multi_rec <- recipe(body_mass_g ~ bill_depth_mm + flipper_length_mm + year, data = penguins_train)

mass_multi_wf <- workflow() %>%
add_model(mass_multi_spec) %>%
add_recipe(mass_multi_rec)

mass_multi_fit <- mass_multi_wf %>%
fit(penguins_train)

mass_multi_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.7807833 0.7781736 386.4596 299.1825 0 3 -1886.231 3782.463 3800.189 37636458 252 256
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mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value
Intercept 233601.98715 60366.73367 3.869714 0.0001388
bill_depth_mm 29.45370 15.60556 1.887385 0.0602578
flipper_length_mm 53.21694 2.10806 25.244509 0.0000000
year -119.81399 30.10749 -3.979541 0.0000903

Our new model has a slightly improved adj.r.squared value. This estimate tells us that
“approximately 77.8% of the variation in penguin body mass is explained by our model”. The
p-value for the global test of model utility has remained significant as well. Now, looking at
the model term metrics, we see that the p-value for bill_depth_mm has remained insignificant
while all the other predictors are statistically significant, so we’ll drop it as well.

mass_multi_spec <- linear_reg() %>%
set_engine("lm")

mass_multi_rec <- recipe(body_mass_g ~ flipper_length_mm + year, data = penguins_train)

mass_multi_wf <- workflow() %>%
add_model(mass_multi_spec) %>%
add_recipe(mass_multi_rec)

mass_multi_fit <- mass_multi_wf %>%
fit(penguins_train)

mass_multi_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs
0.7776845 0.775927 388.4116 442.5111 0 2 -1888.028 3784.056 3798.237 38168479 253 256
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mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value
Intercept 227916.26652 60596.048460 3.76124 0.0002101
flipper_length_mm 50.87429 1.712514 29.70736 0.0000000
year -116.49701 30.207960 -3.85650 0.0001460

Now that all of the model terms are statistically significant, we can consider this our “final”
model. From the output, we can see that this “final” model is of the form:

E [y] = 227916.27 + 50.87 · flipper_length − 116.5 · year

1. What is the expected body mass (in grams) for a penguin whose flipper length is 200mm
and which was observed in the year 2017?

2. To within approximately how many grams should we expect our predictions to be accurate?
(Use 95% unless otherwise requested)

3. Find an interval which is “likely” to contain the body mass of a penguin whose flipper
length is 200mm in the year 2017.

Remark: If a predictor variable xi is dropped from a model, there are three possibilities:

• There is no relationship between y and xi

• A linear relationship exists, but a Type II error occurred
• A relationship between y and xi exists but it is not linear

Regression: Assumptions and Process

Assumptions: Consider that you have a dataset of the form (y, x1, x2, · · · , xk) (think of
an Excel table with these column headers), and a final regression model of the form E [y] =
β0 + β1x1 + · · · + βkxk (other terms are possible). Then, we have the following assumptions
required for making inferences with our model:

• Individual predictor variables are independet of one-another
• Given values of x1, x2, · · · , xk, the error term ε ∼ N (0, σ)
• The random errors are independent of one another
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There are also some others that we will discuss later in the course.

Process: It might be helpful to see where our class sits in the statistical modeling process.
Below is a short outline of the statistical modeling process.

• Identify a question or problem which has inherent uncertainty and for which building a
model makes sense

• Collect, find, or synthesize data
• Clean the data (datasets can be very messy)
• Explore the data (basic summary statistics, plots, etc.)
• Hypothesize the form of your regression model
• Create an initial model or models
• Refine the models
• Check assumptions
• Interpret and use the model (make inferences)
• Check for reproducibility

We’ll be engaged in all of these aspects of the statistical modeling process except for data
collection and checking for reproducibility. Additionally, since we’ll be using existing and
publicly available data sets, we’ll be limited in the types of questions we can ask.
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