
Overview of {tidymodels}

August 3, 2024

Table of contents

Objectives . 1
{tidymodels} in Action . 2

Specifying a Recipe . 5

library(tidyverse)
library(tidymodels)
library(kableExtra)
library(patchwork)
tidymodels_prefer()

penguins <- palmerpenguins::penguins

options(kable_styling_bootstrap_options = c("hover", "striped"))

theme_set(theme_bw(base_size = 14))

Objectives

This notebook gives an overview of the {tidymodels} modeling framework. After reviewing
this notebook, you should be able to:

• Split data into training and testing sets using initial_split()

• Identify, construct, and utilize the major components of a modeling workflow() in the
{tidymodels} framework

– Initialize a model specification for a linear regression model with linear_reg()
%>% set_engine("lm")

1

– Initialize a model recipe with recipe(response ~ predictors, data)
– Package a model and recipe into a workflow()
– Fit a workflow to training data with fit()
– See global model performance metrics using glance()
– Extract the fitted model summary using extract_fit_engine() %>% tidy()
– Use a fitted workflow to make predictions on new data with predict()
– Use metrics to evaluate the performance of a model

{tidymodels} in Action

We’ll run through an example to see how the components of a {tidymodels} workflow() fit
together. We’ll use the palmerpenguins data set since we’ve already seen that one before.

penguins %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Adelie Torgersen 39.1 18.7 181 3750 male 2007
Adelie Torgersen 39.5 17.4 186 3800 female 2007
Adelie Torgersen 40.3 18.0 195 3250 female 2007
Adelie Torgersen NA NA NA NA NA 2007
Adelie Torgersen 36.7 19.3 193 3450 female 2007

Adelie Torgersen 39.3 20.6 190 3650 male 2007

Perhaps a reasonable thing to do might be to try predicting body_mass_g of a penguin using
their bill_length_mm.

Splitting Into Training and Test Sets

We don’t want to snoop for relationships, so let’s start by splitting our data into training at
test sets. We’ll use initial_split() to do this. Note: Please always split your data into
training and test sets. We will see why later in our course.

set.seed(300)
penguin_splits <- initial_split(penguins, prop = 0.75)
penguins_train <- training(penguin_splits)
penguins_test <- testing(penguin_splits)

2

There are multiple things going on in the code cell above.

• Using set.seed() guarantees that every time we run this notebook, we’ll get the same
training and testing data. This is important so as not to leak information from the test
data into the model training process.

• The second line uses initial_split() to assign 75% of rows to belong to the training
data and the remaining 25% to belong to the testing data. We can change the prop
argument if we would like different proportions.

– The initial_split() function doesn’t actually create the training and test data
sets. It just identifies the rows as belonging to belong to one or the other.

• We obtain the training data by using the training() function on our split object.

• Similarly, we obtain the test data by using the testing() function on our split object.

Now we’ve got our two data sets. Lock up that test data and keep it hidden. We don’t want to
know anything about what is in there. This ensures that penguins_test will be an unbiased
test for our fitted model.

EDA on Training Data

Now that we have our training data, we can look at it. In particular, we may want to know if
there is visual evidence of a relationship between bill_length_mm and body_mass_g.

penguins_train %>%
head() %>%
kable() %>%
kable_styling()

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Adelie Torgersen 37.2 19.4 184 3900 male 2008
Adelie Biscoe 41.6 18.0 192 3950 male 2008
Gentoo Biscoe 50.0 15.2 218 5700 male 2007
Chinstrap Dream 46.5 17.9 192 3500 female 2007
Adelie Dream 36.5 18.0 182 3150 female 2007

Chinstrap Dream 45.7 17.0 195 3650 female 2009

3

penguins_train %>%
ggplot() +
geom_point(aes(x = bill_length_mm, y = body_mass_g)) +
labs(x = "Beak Length (in milimeters)",

y = "Body Mass (in grams)")

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

3000

4000

5000

6000

40 50 60

Beak Length (in milimeters)

B
od

y
M

as
s

(in
 g

ra
m

s)

Okay. It looks like there might be a relationship here!

Specifying a Model Class

For the majority of the semester we’ll be working with linear regression models. This means
that we’ll see the linear_reg() model being specified quite often. The great thing about
{tidymodels} is that everything we do with linear_reg() is transferable to other model
classes. We’ll see that later on in our course.

mass_length_spec <- linear_reg() %>%
set_engine("lm")

In the code cell above, we created an instance of a linear regression model constructor, and set
its fitting engine to "lm". The engine chosen determines how the model will be fit – we’ll use
"lm" almost always. We stored our model constructor in an object called mass_length_spec.

4

Specifying a Recipe

Recipes are very useful aspects of a modeling workflow. We’ll use them often. For now, we’ll
create the simplest recipe possible – a recipe consisting of only a formula. We’ll build additional
steps into our recipes as we progress through our course.

mass_length_rec <- recipe(body_mass_g ~ bill_length_mm, data = penguins_train)

In the code cell above, we specify that our model will predict body_mass_g, and it will use
only the variable bill_length_mm in order to make that prediction. The variables used in this
model can be found in penguins_train.

Now we’re ready to package our model specification and our recipe into a workflow().

Wrapping Everything Into a workflow()

We’ll see that workflow()s are very useful aspects of the tidymodels modeling framework.
They’ll allow us to not only optimize our models, but also optimize decisions that need to
be made prior to the models being fit. Additionally, utilizing a workflow() will ensure that
any new data we ask our model to make predictions for will go through exactly the same
transformations as the training data went through.

Let’s create a workflow.

mass_length_wf <- workflow() %>%
add_model(mass_length_spec) %>%
add_recipe(mass_length_rec)

We’ve created a workflow() object and now have added a model and a recipe to it. Now that
we’ve have that simple workflow, let’s fit it to our training data!

Fitting our Workflow

What we’ve essentially done up to this point is we’ve created a structure which is ready to
become a trained model. In terms of a baking analogy, we’ve taken out all of our ingredients
and we know how we want to combine them in order to bake a batch of cookies. We haven’t
made the cookies (fit the model) yet.

Let’s fit the model now.

mass_length_fit <- mass_length_wf %>%
fit(penguins_train)

5

We just took our workflow object, fit it to the penguins_train data, and stored the result in
mass_length_fit. This is now a fitted model. We can see the structure of that model, use
it to make predictions, and more. You may notice that we had to pass the training data as
an agument to the fit() function again. That’s because passing penguins_train as a data
parameter to our recipe() earlier only allowed the recipe to learn what kind of variables it
was working with. It didn’t use that data for anything else.

Extracting the Model Summary

Now that we have a fitted model, let’s check out what it looks like! We’ll first look at the
global model fit / performance metrics. We can do this by passing our fitted model object to
the glance() function.

mass_length_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.349806 0.3472461 651.6183 136.6526 0 1 -2020.986 4047.972 4058.607 107850021 254 256

We’ll talk more about these model metrics in our next class meeting. We can also see
information about the individual terms in our model by piping our fitted model object to
extract_fit_engine() and to tidy(), giving us a data frame of metrics for the individual
model terms.

mass_length_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 366.84419 326.51140 1.123526 0.2622747
bill_length_mm 86.45721 7.39592 11.689851 0.0000000

Great! We’ve accessed the model coefficients, and some statistical measures on those estimated
values. More on those in our next class meeting as well!

6

Making Predictions

Since our model is fit, we can also use it to make predictions on new data. Perhaps we have
two new penguins whose bill_length_mm are 38 and 45 millimeters, respectively.

new_data <- tibble(bill_length_mm = c(38, 45))

mass_length_fit %>%
predict(new_data) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

.pred

3652.218
4257.418

We get a predicted body mass for each penguin! We know, almost surely, that these predictions
are wrong. We can gain some confidence in our predictions by obtaining an interval of plausible
body masses rather than a single point prediction.

mass_length_fit %>%
predict(new_data, type = "conf_int") %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

.pred_lower .pred_upper

3535.702 3768.734
4175.341 4339.496

mass_length_fit %>%
predict(new_data, type = "pred_int") %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

.pred_lower .pred_upper

2363.676 4940.760
2971.533 5543.304

7

Perhaps you’ve noticed that type = "conf_int" and type = "pred_int" led to different
intervals. This is because the confidence intervals ("conf_int") attempt to predict the average
body_mass_g for all penguins whose bill_length_mm is 38 and 45 millimeters, respectively.
The prediction intervals ("pred_int") are much wider. This is because they attempt to
predict the body_mass_g for a single penguin whose bill_length_mm is 38 and 45 millimeters,
respectively. It is important to note whether your goal is to predict an average response or an
individual response, and to use the appropriate interval.

Assessing Model Performance

If we are ready to give our model one final test, then we can assess the model’s performance on
the test data using a metric of our choosing.

mass_length_fit %>%
augment(penguins_test) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
head() %>%
kable() %>%
kable_styling()

bill_length_mm body_mass_g .pred

39.1 3750 3747.321
36.6 3700 3531.178
37.7 3600 3626.281
35.9 3800 3470.658
38.2 3950 3669.509

37.9 3150 3643.572

In the code cell above, we used augment() rather than predict(), which is a special function
that appends a .pred column (or the corresponding interval columns) to the data frame
containing our new data. We then selected only the relevant columns for our small model.

Using this new data frame, we can compare the truth (known, actual body_mass_g) to our
predictions (.pred) to assess the quality of predictions.

mass_length_fit %>%
augment(penguins_test) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
rmse(body_mass_g, .pred) %>%
kable() %>%
kable_styling()

8

.metric .estimator .estimate

rmse standard 631.3512

mass_length_fit %>%
augment(penguins_test) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
rsq(body_mass_g, .pred) %>%
kable() %>%
kable_styling()

.metric .estimator .estimate

rsq standard 0.3669341

mass_length_fit %>%
augment(penguins_test) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
mae(body_mass_g, .pred) %>%
kable() %>%
kable_styling()

.metric .estimator .estimate

mae standard 506.5625

There are lots of metrics we could use. If we are interested in multiple metrics, we can collect
them all at once by creating a metric_set().

my_metrics <- metric_set(rmse, mae, rsq)

mass_length_fit %>%
augment(penguins_test) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
my_metrics(body_mass_g, .pred) %>%
kable() %>%
kable_styling()

9

.metric .estimator .estimate

rmse standard 631.3511796
mae standard 506.5625374
rsq standard 0.3669341

Summary

The following summary shows the basic steps for using the {tidymodels} framework for fitting
a statistical model to data.

#create the model specification
lin_reg_spec <- linear_reg() %>%

set_engine("lm")

#Create a recipe to describe what the model will do
lin_reg_rec <- recipe(response ~ predictors, data)

#package the model and recipe into a workflow
lin_reg_wf <- workflow() %>%

add_model(lin_reg_spec) %>%
add_recipe(lin_reg_rec)

#fit the workflow to the training data
lin_reg_fit <- lin_reg_wf %>%

fit(training_data)

Once we have a fitted workflow, there’s lots we can do with it. We can see global model-utility
and performance metrics.

lin_reg_fit %>%
glance()

We can see the structure of the fitted model.

lin_reg_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

10

We can also use our fitted workflow to make predictions on new data.

lin_reg_fit %>%
predict(new_data) %>%
head() %>%
kable() %>%
kable_styling()

We can append predictions to an existing data frame of new records.

lin_reg_fit %>%
augment(new_data) %>%
head() %>%
kable() %>%
kable_styling()

Extra Ideas: Visualizing Model Coefficients

Because we can obtain the model coefficients and statistical measures of uncertainty on those
estimates, we can plot the confidence intervals on those model coefficients. Plotting the plausible
range for the fitted coefficients, and checking to see whether the interval overlaps with 0 is
a great way to convey, visually, whether a predictor is significant or not. Furthermore, this
provides a convincing description of the direction and magnitude of the estimated effect size,
which is understandable even by non-experts!

mass_length_fit %>%
extract_fit_engine() %>%
tidy() %>%
ggplot() +
geom_errorbarh(aes(xmin = estimate - (2*std.error),

xmax = estimate + (2*std.error),
y = term,
color = term),

show.legend = FALSE) +
geom_point(aes(x = estimate, y = term, color = term),

show.legend = FALSE) +
geom_vline(xintercept = 0, linetype = "dashed") +
labs(x = "Estimated Range for Coefficients",

y = "Predictor")

11

(Intercept)

bill_length_mm

0 400 800

Estimated Range for Coefficients

P
re

di
ct

or

From the plot above, we can see that the range of plausible coefficients on the bill length
predictor includes only positive values. That is, penguins with longer bills are expected to be
more massive!

Extra Ideas: Residual Analyses

It is important not to treat our models as black boxes or to follow them blindly. The error
metrics we compute tell us only part of the story. To understand fully how well our model
performs and where/if the model should be trusted, we must understand the types of errors
our models make. Building confidence and prediction intervals using our models assumes that
the residuals (prediction errors) are distributed randomly, with mean 0 and constant standard
deviation. If these assumptions are not satisfied, then our intervals cannot be trusted!

p1 <- mass_length_fit %>%
augment(penguins_train) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
mutate(residual = body_mass_g - .pred) %>%
ggplot() +
geom_point(aes(x = bill_length_mm, y = residual)) +
geom_smooth(aes(x = bill_length_mm, y = residual),

color = "red") +
geom_hline(yintercept = 0,

linetype = "dashed",
color = "blue") +

12

labs(title = "Residuals versus Bill Length",
x = "Bill Length (in millimeters)",
y = "Residual Error")

p2 <- mass_length_fit %>%
augment(penguins_train) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
mutate(residual = body_mass_g - .pred) %>%
ggplot() +
geom_point(aes(x = body_mass_g, y = residual)) +
geom_smooth(aes(x = body_mass_g, y = residual),

color = "red") +
geom_hline(yintercept = 0,

linetype = "dashed",
color = "blue") +

labs(title = "Residuals versus Body Mass",
x = "Body Mass (in grams)",
y = "Residual Error")

p3 <- mass_length_fit %>%
augment(penguins_train) %>%
select(bill_length_mm, body_mass_g, .pred) %>%
mutate(residual = body_mass_g - .pred) %>%
ggplot() +
geom_point(aes(x = .pred, y = residual)) +
geom_smooth(aes(x = .pred, y = residual),

color = "red") +
geom_hline(yintercept = 0,

linetype = "dashed",
color = "blue") +

labs(title = "Residuals versus Predicteds",
x = "Predicted Body Mass (in grams)",
y = "Residual Error")

(p1 / p2 / p3)

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite outside the scale range
(`stat_smooth()`).

Warning: Removed 2 rows containing missing values or values outside the scale range

13

(`geom_point()`).

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite outside the scale range (`stat_smooth()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

`geom_smooth()` using method = 'loess' and formula = 'y ~ x'

Warning: Removed 2 rows containing non-finite outside the scale range (`stat_smooth()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

−100001000

40 50 60

Bill Length (in millimeters)

R
es

id
ua

l E
rr

or

Residuals versus Bill Length

−100001000

3000 4000 5000 6000

Body Mass (in grams)

R
es

id
ua

l E
rr

or

Residuals versus Body Mass

−100001000

3500 4000 4500 5000 5500

Predicted Body Mass (in grams)

R
es

id
ua

l E
rr

or

Residuals versus Predicteds

Note: There are several concerning take-aways of the previous three plots.

• In the first and third plots, we see evidence that the spread of the residuals widens for
lengthier bills and for heavier body masses.

– This means that any confidence or prediction intervals we build using our models
will be unreliable!

14

– The intervals we construct will be too optimistic for penguins with above average bill
lengths or body mass. Those confidence and prediction intervals smaller penguins
will also not be narrow enough.

• In the second plot, we see a clear linear trend in the relationship between our prediction
errors and the true penguin body mass.

– This indicates that the our model is over-predicting (predicting body masses that are
too high) for penguins whose actual body mass is below average, and underpredicting
(predicting body masses that are too low) for penguins whose actual body mass is
above average.

– This means that our model’s prediction’s are not to be trusted – if we obtain a
prediction of low body mass then we know it is likely not low enough, while we know
that obtaining a prediction of high body mass is not likely a high enough prediction.
Hopefully we can improve the model.

15

	Objectives
	{tidymodels} in Action
	Specifying a Recipe

