
Data Wrangling and Tidy Data

August 22, 2024

Table of contents

Objectives . 3
Set-Up . 3

Challenge 1: Inconsistent Data Recording . 3
Challenge 2: Unexpected Data Types . 5
Challenge 3: Multivariable Columns . 6
Challenge 4: Wide- and Long-Format Data . 8
Challenge 5: Data Across Multiple Tables . 10

Summary . 12

rm(list = ls())
library(tidyverse)
library(tidymodels)
#install.packages("randomNames") #cannot have install.packages() in a notebook
library(randomNames)
library(kableExtra)

options(kable_styling_bootstrap_options = c("hover", "striped"))

theme_set(theme_bw())

ikea <- read_csv('https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2020/2020-11-03/ikea.csv')

###############################
#Generate Data
###############################
set.seed(300)
items <- ikea %>%
count(category) %>%

1

sample_n(5) %>%
pull(category)

items_dup <- items %>%
append(c("Outdoor Furniture", "Nursary Furnature"))

products <- tibble(items = items_dup, prices = c("$125", "$675", "$1,350", "$475", "$725", "$675", "$475"))

clients <- tibble(client_id = seq(1, 10, 1),
name = randomNames(10),
phone_number = paste0("(",

sample(111:777, 10),
") ",
sample(111:777, 10),
"-",
sample(1111:7777, 10)))

numRows <- 126735

orders <- tibble(client_id = sample(1:10, size = numRows, replace = TRUE), product = sample(items, size = numRows, replace = TRUE), quantity = 1 + rpois(numRows, lambda = 2))

purchase_history <- crossing(client_id = clients$client_id, items = products$items, year = c("2018", "2019", "2020", "2021")) %>%
mutate(quantity = 150 + (-1)^(sample(0:1, 280, replace = TRUE))*rpois(280, 50)) %>%
left_join(products) %>%
mutate(prices = str_replace(prices, "\\$", ""),

prices = str_replace(prices, ",", ""),
prices = as.numeric(prices),
total_purchased = quantity*prices) %>%

select(-quantity, - prices)

#purchase_history

historical_purchases <- purchase_history %>%
group_by(client_id, year) %>%
summarize(total_value = sum(total_purchased)) %>%
ungroup() %>%
pivot_wider(names_from = year, values_from = total_value)

##################################
#End Data Generation
##################################

2

#Remove all intermediate variables
rm(list = setdiff(ls(), c("clients", "orders", "products", "purchase_history", "historical_purchases")))

Objectives

This notebook gives an overview of some of the most common problems that data come with,
and some methods for dealing with those issues.

• Inconsistent data recording issues
• Unexpected data types
• Multi-variable columns
• Wide- and Long-format data
• Data across multiple tables

Set-Up

Run all of the code in the initial code chunk, line by line. You will likely encounter an error
on line 20 because you don’t have the randomNames package installed on your machine. In
line 19, un-comment install.packages("randomNames") and run it. Now re-run line 20 and
continue running each line in the code chunk. You can examine the code if you like, but it is
not necessary.

The code generates several tables of data, exhibiting some common challenges when dealing
with data. The result of running the code in that chunk will be five tables in your Global
Environment: clients, orders, products, purchase_history, and historical_purchases.
Use your basic data exploration functions (glimpse(), head(), tail(), summary(), etc.) to
understand these data frames.

Challenge 1: Inconsistent Data Recording

Take a look at the products data frame. The data frame only has seven rows, but among
those rows are seemingly duplicated records. Luckily, while the item categories are duplicated
(with different spelling and capitalization), the prices are consistent. We have several options
available:

products %>%
kable() %>%
kable_styling()

3

items prices
TV & media furniture $125
Outdoor furniture $675
Beds $1,350
Nursery furniture $475
Sideboards, buffets & console tables $725
Outdoor Furniture $675
Nursary Furnature $475

• Manually drop the duplicated rows

– Our data frame is small enough for this, but with a larger data frame, this might
be tedious.

– If this course of action is to be taken, we must make sure that we are not accidentally
deleting data.

• We can use case_when() to manually override the values in some cells.

There are certainly other things we could do as well. These two approaches are shown below.

#Filter out the duplicated rows
products %>%
filter(!(items %in% c("Outdoor Furniture", "Nursary Furnature"))) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

items prices
TV & media furniture $125
Outdoor furniture $675
Beds $1,350
Nursery furniture $475
Sideboards, buffets & console tables $725

#Use Case/When to overwrite values and then filter to distinct rows
products %>%
mutate(items = case_when(

items == "Outdoor Furniture" ~ "Outdoor furniture",
items == "Nursary Furnature" ~ "Nursery furniture",
TRUE ~ items

4

)) %>%
distinct() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

items prices
TV & media furniture $125
Outdoor furniture $675
Beds $1,350
Nursery furniture $475
Sideboards, buffets & console tables $725

The case_when() approach is more applicable than simply removing the rows, because it isn’t
often that we would actually like to remove rows. We actually do mean to remove rows here,
though. Choose your favorite method and overwrite the products data frame with a version
of itself that does not have the duplicated rows.

#update the products data frame here

Challenge 2: Unexpected Data Types

Perhaps you’ve noticed that the prices column in the products data frame, is being inter-
preted as a character data type. We would prefer for that column to be a numeric variable
so that we can run computations with it. There are two issues causing the prices to be
characters – the dollar sign ($) and the comma separator. We’ll need to remove those and
convert the column to a numeric value.

products %>%
kable() %>%
kable_styling()

items prices
TV & media furniture $125
Outdoor furniture $675
Beds $1,350
Nursery furniture $475
Sideboards, buffets & console tables $725

5

Outdoor Furniture $675
Nursary Furnature $475

We’ll make use of the str_replace() function for this. This function allows us to search
for a sub-string and, if it is found, replace it with a new substring. We’ll replace any found
dollar signs and commas with nothing…effectively erasing them. Once this is done, we’ll use
as.numeric() to change the data type. As a reminder, we are changing an existing column
in our data frame here, so we’ll make use of mutate().

products %>%
mutate(

prices = str_replace(prices, "\\$", ""),
prices = str_replace(prices, ",", ""),
prices = as.numeric(prices)

) %>%
kable() %>%
kable_styling()

items prices
TV & media furniture 125
Outdoor furniture 675
Beds 1350
Nursery furniture 475
Sideboards, buffets & console tables 725
Outdoor Furniture 675
Nursary Furnature 475

The dollar sign is a special character in R, so we needed to escape it with \\$ to convey that
we want to match a literal dollar sign. Edit the code cell above so that the changes you made
to the prices column are saved and the products data frame is updated.

Challenge 3: Multivariable Columns

We’ll take a look at the clients data frame. The name column contains lastName, firstName
for each client.

clients %>%
kable() %>%
kable_styling()

6

client_id name phone_number
1 Taylor, Trevor (284) 350-2197
2 Silva, Jonathan (768) 647-3338
3 De Lara, Maria (249) 478-2990
4 Knobel, Justin (699) 237-5637
5 Weber, Kevin (243) 263-2235
6 el-Mattar, Najma (738) 441-7703
7 Campbell, Justin (750) 177-2744
8 al-Barakat, Shamaail (584) 518-7284
9 Schell, Jakob (332) 722-4831

10 Fields, Briana (417) 162-2994

Perhaps we’d like to have separate columns for first_name and last_name. We can use the
separate() function for this.

clients %>%
separate(name, into = c("last_name", "first_name"), sep = ", ") %>%
kable() %>%
kable_styling()

client_id last_name first_name phone_number
1 Taylor Trevor (284) 350-2197
2 Silva Jonathan (768) 647-3338
3 De Lara Maria (249) 478-2990
4 Knobel Justin (699) 237-5637
5 Weber Kevin (243) 263-2235
6 el-Mattar Najma (738) 441-7703
7 Campbell Justin (750) 177-2744
8 al-Barakat Shamaail (584) 518-7284
9 Schell Jakob (332) 722-4831

10 Fields Briana (417) 162-2994

This function will separate over all instances of the separator, so we’ll need a new column
name for each of the resulting parts. As a reminder, we use c() in R when providing a list of
values.

7

Challenge 4: Wide- and Long-Format Data

Tidy data is data that satisfies the following properties:

• Every column is a measured variable.
• Each row corresponds to a single record or observational unit.

Data is said to be in a wide format if columns aren’t necessarily measured variables. Instead,
the columns themselves correspond to a variable. While we typically prefer long-format data
for analysis, there are certainly uses for wide-formats. In particular, financial data is usually
presented or stored in wide format. Additionally, it is possible for data to be too long. We can
use pivot_longer() to move from wide-format to long format and we can use pivot_wider()
to move from long format to wide.

Let’s take a look at the historical_purchases data frame.

historical_purchases %>%
head() %>%
kable() %>%
kable_styling()

client_id 2018 2019 2020 2021
1 833875 791600 673325 640800
2 713725 800850 566900 662300
3 662375 575775 514150 597475
4 563050 814400 615950 645775
5 684500 708400 604825 835100
6 644025 734475 809775 759575

That data frame contains purchase totals for each client across multiple years. The data is in
wide format because, for example "2018" is not a variable we can measure for each client_id.
That column name, "2018" is the value of a hidden year variable. We’ll use pivot_longer()
to transform our data, creating a year column and total_purchases column.

historical_purchases %>%
pivot_longer(-client_id, names_to = "year", values_to = "total_purchases") %>%
head() %>%
kable() %>%
kable_styling()

8

client_id year total_purchases
1 2018 833875
1 2019 791600
1 2020 673325
1 2021 640800
2 2018 713725
2 2019 800850

Now our data frame has become longer! The year variable is currently stored as a character,
we can convert it to a number using mutate() and as.numeric().

historical_purchases %>%
pivot_longer(-client_id, names_to = "year", values_to = "total_purchases") %>%
mutate(year = as.numeric(year)) %>%
head() %>%
kable() %>%
kable_styling()

client_id year total_purchases
1 2018 833875
1 2019 791600
1 2020 673325
1 2021 640800
2 2018 713725
2 2019 800850

Just so you can see how pivot_wider() works, let’s pivot this tidy data frame back to a wide
format, but include a column for each client_id rather than year.

historical_purchases %>%
pivot_longer(-client_id, names_to = "year", values_to = "total_purchases") %>%
mutate(year = as.numeric(year)) %>%
pivot_wider(id_cols = year, names_from = client_id, values_from = total_purchases) %>%
kable() %>%
kable_styling()

9

year 1 2 3 4 5 6 7 8 9 10
2018 833875 713725 662375 563050 684500 644025 759025 626100 716350 537425
2019 791600 800850 575775 814400 708400 734475 556975 594625 630225 433850
2020 673325 566900 514150 615950 604825 809775 734250 662200 761675 575950
2021 640800 662300 597475 645775 835100 759575 773275 715150 634100 735050

Moving between wide and long formats is a pretty useful skill. I use it often when I am
summarizing data and would like to display a summary table in a report. These summary
tables sometimes look more pleasing and are easier to digest in a wide format.

Challenge 5: Data Across Multiple Tables

It isn’t often the case that all of your data is neatly confined to a single table. In fact, there
are very good database-design and infrastructure reasons for this not to be the case. Database
Engineers and Administrators work very hard to normalize their databases. This normalization
doesn’t have anything to do with finding means or scaling – it is a design strategy that removes
redundancy and reduces storage size requirements.

The advantage to space-saving is fairly obvious, but the redundancy-reduction may not be.
Consider, for example that one of our clients updated their phone number. If we had all of our
data stored in a single table, then we would need to update their phone number in every single
record corresponding to that client. Because our data has been normalized, however, the only
place phone numbers are stored is in the clients data frame. We only need to update that
client’s phone number in that one small table, because that is the only place the phone number
has been stored.

The drawback to working with data stored this way is that we’ll need to pull information from
across multiple tables in order to obtain the data we’d like to work with. For example, perhaps
we’d like a version of the orders data frame which includes the ordering client’s name and
phone number, along with the total dollar value of the order they made. The data we need is
spread across the orders, clients, and products data frames.

orders %>%
head() %>%
kable() %>%
kable_styling()

client_id product quantity
1 Outdoor furniture 2

10

2 Outdoor furniture 4
9 TV & media furniture 4
4 Beds 2
3 TV & media furniture 2
5 Outdoor furniture 2

clients %>%
kable() %>%
kable_styling()

client_id name phone_number
1 Taylor, Trevor (284) 350-2197
2 Silva, Jonathan (768) 647-3338
3 De Lara, Maria (249) 478-2990
4 Knobel, Justin (699) 237-5637
5 Weber, Kevin (243) 263-2235
6 el-Mattar, Najma (738) 441-7703
7 Campbell, Justin (750) 177-2744
8 al-Barakat, Shamaail (584) 518-7284
9 Schell, Jakob (332) 722-4831

10 Fields, Briana (417) 162-2994

products %>%
kable() %>%
kable_styling()

items prices
TV & media furniture $125
Outdoor furniture $675
Beds $1,350
Nursery furniture $475
Sideboards, buffets & console tables $725
Outdoor Furniture $675
Nursary Furnature $475

We can use “joins” to bring all of this information into a single table using the following
steps.

11

• Begin with the orders table.
• Add columns for the client’s name and phone number by joining the clients data frame

onto the orders table.
• Add a column for product prices by joining the products data frame onto the resulting

table.
• Use mutate() to compute the total dollar value for each order.

There are lots of different types of joins that can be made between data frames. I find that
what I usually want is a left_join() – that is, start with the table on the left and lets join
new variables on to it. We’ll be using that here. The left_join() will add new variables on
to our data frame by matching values on shared columns (or columns that we explicitly define
as shared via the by argument).

orders %>%
left_join(clients) %>%
left_join(products, by = c("product" = "items")) %>%
head() %>%
kable() %>%
kable_styling()

Joining with `by = join_by(client_id)`

client_id product quantity name phone_number prices
1 Outdoor furniture 2 Taylor, Trevor (284) 350-2197 $675
2 Outdoor furniture 4 Silva, Jonathan (768) 647-3338 $675
9 TV & media furniture 4 Schell, Jakob (332) 722-4831 $125
4 Beds 2 Knobel, Justin (699) 237-5637 $1,350
3 TV & media furniture 2 De Lara, Maria (249) 478-2990 $125
5 Outdoor furniture 2 Weber, Kevin (243) 263-2235 $675

When using joins, it is important to verify that everything has worked as you expected. While
not fool-proof, I usually check to ensure that the number of columns and number of rows in
the resulting data frame are what I expected.

Summary

There’s lots of ways our data can be inconvenient. Wrangling data is a really important skill to
gain. This notebook gave you exposure to some of the most common data wrangling/cleaning
tasks.

12

• Using case_when() to update individual values within a column, using some criteria.

• Using distinct() to remove duplicate rows in a data frame.

– Be careful when removing rows of data. Make sure that you are truly removing
duplicate records rather than distinct records which are identical by chance.

• Using str_replace() to remove or replace characters in a column.

• Using as.numeric() to convert a column to a numeric data type.

– We can also use as.character() to convert a column to a string data type or
as.factor() to convert explicitly to a categorical variable.

• Using separate() in the case that a column contains more than one variable.

– We can use unite() to combine multiple columns into a single column.

• Use pivot_longer() to convert from wide-format to long-format.

– We can use pivot_wider() to convert from long to wide.

• If our data is split across multiple tables, we can use *_join() to join variables from
multiple tables together into a single table.

– There are lots of varieties of join – the left_join() begins with the table on the
left and adds variables on to it. This is by far the most frequent join that I’ve used.

This notebook hasn’t covered every wrangling tool you’ll need, but it has given you a toolbox
that will help in a variety of common scenarios.

13

	Objectives
	Set-Up
	Challenge 1: Inconsistent Data Recording
	Challenge 2: Unexpected Data Types
	Challenge 3: Multivariable Columns
	Challenge 4: Wide- and Long-Format Data
	Challenge 5: Data Across Multiple Tables

	Summary

