
Data Visualization using ggplot()

August 3, 2024

Table of contents

Data Visualization and the Grammar of Graphics . 1
Our Data . 2
The Anatomy of ggplot() . 3
Choosing Effective Data Visualizations . 7

Single Numerical Variable . 8
Single Categorical Variables . 10
Numerical Variable vs. Numerical Variable . 12
Categorical Variable vs. Numerical Variable . 13
Categorical Variable vs. Categorical Variable 15
Using the Wrong Type of Plot . 17

Tricking Out Your Plots . 19
Final Thoughts . 24

library(tidyverse)
library(tidymodels)
library(kableExtra)
library(palmerpenguins)

options(kable_styling_bootstrap_options = c("hover", "striped"))

theme_set(theme_bw())

Data Visualization and the Grammar of Graphics

Data visualization is an extremely important part of any analysis. As a researcher or analyst,
data visualization will likely bookend your work, serving as a reservoir for idea and hypothesis
generation at the beginning of a project as well as becoming a vehicle for conveying important
takeaways as you summarize and disseminate your results upon completion.

1

Our Data

We’ll make use of a relatively famous data set on penguins from the Palmer Archipelago, in
Antarctica. This data was collected by Dr. Kristen Gorman. Both the {tidymodels} and
{palmerpenguins} packages have versions of the penguins data frame, but we’ll want to use
the version from {palmerpenguins}. For this reason, we’ll explicitly store that version of the
data set into our environment.

penguins <- palmerpenguins::penguins

penguins %>%
head() %>%
kable() %>%
kable_styling()

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
Adelie Torgersen 39.1 18.7 181 3750 male 2007
Adelie Torgersen 39.5 17.4 186 3800 female 2007
Adelie Torgersen 40.3 18.0 195 3250 female 2007
Adelie Torgersen NA NA NA NA NA 2007
Adelie Torgersen 36.7 19.3 193 3450 female 2007
Adelie Torgersen 39.3 20.6 190 3650 male 2007

Learning from Training Data

Remember that we need an unbiased set of observations in order to be able to test our
models. We need to be “blind” to those observations in order for our assessment to be
truly unbiased. This means that we should only be learning from our training data – this
includes any initial exploratory data analysis.
We’ll split into training and validation data below.

set.seed(300)
data_splits <- initial_split(penguins, prop = 0.75)

train <- training(data_splits)
test <- testing(data_splits)

train %>%
head() %>%

2

kable() %>%
kable_styling()

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year
Adelie Torgersen 37.2 19.4 184 3900 male 2008
Adelie Biscoe 41.6 18.0 192 3950 male 2008
Gentoo Biscoe 50.0 15.2 218 5700 male 2007
Chinstrap Dream 46.5 17.9 192 3500 female 2007
Adelie Dream 36.5 18.0 182 3150 female 2007
Chinstrap Dream 45.7 17.0 195 3650 female 2009

Notice that in creating our training/testing split, our observations were randomly shuffled and
then put into the training and testing sets. We’ll work with our training data from here on.

Let’s move on to plotting!

The Anatomy of ggplot()

In R, we have access to an extremely popular an easy-to-use plotting library, called {ggplot2}.
The main philosophy behind {ggplot2} is that data visualization should follow a layered
grammar of graphics. The grammar of graphics is a notion first introduced by Leland Wilkinson
in 2006, and the layering functionality is a convenient implementation in {ggplot2}.

Recall from our introduction to the tidyverse that we can read the pipe below as saying
“start with the train dataset and then create a ggplot()”.

train %>%
ggplot()

3

https://vita.had.co.nz/papers/layered-grammar.html

The function ggplot() calls (or initializes) a plot object but won’t actually create anything
interesting by itself – just an empty rectangle. Next, we need to add a geometry layer to our
plot and pass it the appropriate aesthetics. The geometry layer determines the type of plot we
will build and the aesthetics pass the information required from our dataset to construct the
plot. You can find some of the most common geometry layers (or geoms) and their [minimum]
required aesthetics below.

• geom_point() will create a scatterplot, requiring x and y aesthetics.
• geom_line() will create a linegraph, requiring x and y aesthetics.
• geom_boxplot() will create a boxplot, requiring an x aesthetic.
• geom_histogram() will create a histogram, requiring an x aesthetic.
• geom_density() will create a density, requiring an x aesthetic.
• geom_bar() will create a bargraph, requiring an x aesthetic.

Let’s create a scatterplot between bill_length_mm and bill_depth_mm using the
geom_point() layer.

train %>%
ggplot() +
geom_point(aes(x = bill_length_mm, y = bill_depth_mm))

4

15.0

17.5

20.0

40 50 60
bill_length_mm

bi
ll_

de
pt

h_
m

m

The ggplot() function assumes by default that the first and second argument in aes() corre-
spond to the x- and y-variables, so you may also write aes(bill_length_mm, bill_depth_mm)
to save some typing. Each layer in a ggplot is added to the existing plot object using a +
sign, which you can read as “with”. That is, we can read the code above as “start with the
train data set and then create a ggplot() with a point (scatterplot) layer”. This layered
functionality allows us to combine and customize plots quite easily, as you will see further on
in this notebook.

Additional aesthetics can typically be added in order to better visualize the data or to add more
information into our plot. For example, we might wonder whether the relationship between
bill length and bill depth is different among the various penguin species. We can color the
points in the scatter plot by adding color = species to the aes() function. You might try
size = species as an aesthetic as well.

train %>%
ggplot() +
geom_point(aes(bill_length_mm, bill_depth_mm, color = species))

5

15.0

17.5

20.0

40 50 60
bill_length_mm

bi
ll_

de
pt

h_
m

m species

Adelie

Chinstrap

Gentoo

Often times, you may want to preprocess the data set before feeding it into a plot object. For
example, let’s say that we wanted to see if there was any trend in the number of penguin
observations each year. This information does not already appear as a column in the dataset,
so we will need to use the count() function to create it first.

train %>%
count(year) %>%
#Recall that the count() function makes a new column named n which contains the
#number of observations for each year
ggplot() +
geom_line(aes(year, n)) +
geom_point(aes(year, n))

6

84

85

86

87

88

89

2007.0 2007.5 2008.0 2008.5 2009.0
year

n

In the visualization above, two layers were added- a scatter plot which created the points, and
a line graph which created the lines that connect the points. Notice that all we needed to do
was “add” the layers with the + symbol.

If we wanted to save a bit of typing, because both plotting layers map the same aesthetics to
the same types of objects, we can pass aes(year, n)) to once to ggplot() rather than to
the individual plot layers.

Choosing Effective Data Visualizations

Data visualizations have become commonplace in our society as data collection has increased.
There are many types of visualizations available to us- scatter plots, box plots, mosaic plots,
and word clouds, just to name a few. How can we decide what type of visualization is appro-
priate for a dataset? The answer depends largely on the type of data that you are working
with. Recall that a numerical variable is a variable which is obtained through measurement,
and for which comparing values of the variable makes sense (think – would an average of these
values be meaningful?). Examples of numerical variables include heights, distances, temper-
atures, budget sizes, etc. A categorical variable is a variable which sorts values into “bins”.
Examples of categorical variables include a person’s sex, the answer to a yes or no question, a
student’s grade level, etc. Whether to consider a variable to be numerical or categorical is not
always obvious and may depend upon the context of the dataset.

7

Single Numerical Variable

A single numerical variable can be visualized using a histogram, a box plot, or a violin plot.
Let’s consider a the bill length bill_length_mm of Gentoo penguins. A histogram takes the
various bill lengths of the penguins (between 40.9 mm and 59.6 mm in this case), and groups
them together into bins of equal length. Then, a bar is drawn over each bin whose height
reflects the number (or proportion) of penguins whose bill length lies within the bin. The
bins = argument in the geom_histogram() layer controls the number of bins that are created.
Notice that the bins argument falls outside of the aes() parentheses because its value is not
being inherited from a column in our dataset.

train %>%
filter(!is.na(bill_length_mm),

species == "Gentoo") %>%
ggplot() +
geom_histogram(aes(x = bill_length_mm), bins = 20)

0.0

2.5

5.0

7.5

10.0

12.5

40 45 50 55 60
bill_length_mm

co
un

t

Often, we would like to see how close a histogram is to a Normal distribution (the bell-shaped
curve). To do this, we will add a stat_function layer which draws a Normal curve with mean
and standard deviation equal to the mean and standard deviation of the data set. In this case,
we will let the y-coordinate be ..density.. which measures the proportion of penguins which
lie in each bin, rather than the number of penguins. The arguments of the stat_function()

8

layer are fun =, which tells R what type of distribution to draw and args =, which provides
R with the mean and standard deviation of the distribution.

train %>%
filter(!is.na(bill_length_mm),

species == "Gentoo") %>%
ggplot() +
geom_histogram(aes(x = bill_length_mm, y = ..density..), bins = 20) +
stat_function(fun = dnorm,

args = list(mean = train %>%
filter(!is.na(bill_length_mm),

species == "Gentoo") %>%
pull(bill_length_mm) %>%
mean(),

sd = train %>%
filter(!is.na(bill_length_mm),

species == "Gentoo") %>%
pull(bill_length_mm) %>%
sd()),

color = "red")

0.00

0.05

0.10

0.15

40 45 50 55 60
bill_length_mm

de
ns

ity

A box plot is helpful when your goal is to visualize the “center” of the data (using the median)
and to get a sense of how spread out the data is.

9

train %>%
filter(!is.na(bill_length_mm),

species == "Gentoo") %>%
ggplot() +
geom_boxplot(aes(x = bill_length_mm))

−0.4

−0.2

0.0

0.2

0.4

40 45 50 55 60
bill_length_mm

The line in the interior of the white box corresponds to the median value of the bill length
variable, which is 47.3 mm in this example. The length of the white box is the interquartile
range. All values between the 25th and 75 percentiles of the data lie in this range. The
lines (“whiskers”) coming from the interquartile range extend out to either i) the minimum or
maximum value in the data, or ii) to 1.5 times the interquartile range. Any values that extend
beyond 1.5 interquartile ranges away from the median are marked with dots.

You’ve probably already noticed some advantages to the ggplot() framework. Creating new
types of plots are easy because the syntax is consistent. Switching from a histogram to a box
plot is as simple as changing the type of layer being added to the plot!

Single Categorical Variables

In order to visualize a single categorical variable, a bar plot is appropriate. The bar plot
counts the number of occurrences of each level of the categorical variable. For example, we
can explore whether there are similar numbers of penguins of each species contained within
the dataset:

10

train %>%
filter(!is.na(species)) %>%
ggplot() +
geom_bar(aes(x = species))

0

25

50

75

100

Adelie Chinstrap Gentoo
species

co
un

t

To make a more visually appealing bar plot, we can have the bars be different colors using the
fill = aesthetic. I usually add a show.legend = FALSE argument to the geom_bar() layer
so that we don’t have redundant information in the plot. (You can try it both ways to see the
difference).

train %>%
filter(!is.na(species)) %>%
ggplot() +
geom_bar(aes(x = species, fill = species), show.legend = FALSE)

11

0

25

50

75

100

Adelie Chinstrap Gentoo
species

co
un

t

Numerical Variable vs. Numerical Variable

If you would like to visualize the relationship between two numerical variables, you should
use a scatter plot. For example, we could consider the relationship between the bill length
(bill_length_mm) and bill depth (bill_depth_mm) of the penguins in the dataset:

train %>%
filter(!is.na(bill_length_mm)) %>%
ggplot() +
geom_point(aes(x = bill_length_mm, y = bill_depth_mm))

12

15.0

17.5

20.0

40 50 60
bill_length_mm

bi
ll_

de
pt

h_
m

m

Each point on the scatter plot corresponds to a single penguin. The x- and y- coordinate of
each point is equal to the bill length and bill depth of the corresponding penguin.

Categorical Variable vs. Numerical Variable

To describe the relationship between a categorical and a numerical variable, use side-by-side
box plots. Does the bill length of a penguin change based on its species? Recall from earlier
that, at a minimum, a boxplot requires an x aesthetic. Here we will pass it both an x and y
aesthetic, where x is a grouping variable (categorical) and y is the numerical variable we are
interested in visualizing across the groups.

train %>%
filter(!is.na(bill_length_mm)) %>%
ggplot() +
geom_boxplot(aes(x = species, y = bill_length_mm))

13

40

50

60

Adelie Chinstrap Gentoo
species

bi
ll_

le
ng

th
_m

m

We can also use violin plots to visualize the relationship. Violin plots are sort of a mash-up
between a box plot and a histogram, where the sides of the violin plot are smoothed versions
of the bars from the histogram of the data. The width of the violin plot corresponds to the
proportion of the data that falls within that range.

train %>%
filter(!is.na(bill_length_mm)) %>%
ggplot() +
geom_violin(aes(x = species, y = bill_length_mm))

14

40

50

60

Adelie Chinstrap Gentoo
species

bi
ll_

le
ng

th
_m

m

Categorical Variable vs. Categorical Variable

To visualize the relationship between two categorical variables, you can use stacked bar plots
or mosaic plots. A stacked bar plot separates the bars of a bar plot according to the values of
the second categorical variable. For example, we can plot the species of a penguin against its
sex by adding the fill = sex aesthetic:

train %>%
filter(!is.na(sex)) %>%
ggplot() +
geom_bar(aes(x = species, fill = sex))

15

0

30

60

90

Adelie Chinstrap Gentoo
species

co
un

t sex

female

male

A mosaic plot creates largely the same graphic, but makes it easier to see the proportions of
each level of one variable that belong to a level of the other variable. The width of each box
corresponds to the proportion of the overall dataset which has values that lie in the intersection
of those variables. From the mosaic plot, we can see that males are slightly over-represented
among Gentoo penguins relative to the other species. The code below requires installing and
loading the ggmosaic package. Notice also that the aesthetic argument is also slightly different
for mosaic plots. The variables which you would like to have plotted against each other should
be wrapped in a product() function within the aesthetics for geom_mosaic() layer.

library(ggmosaic)
train %>%

filter(!is.na(sex)) %>%
ggplot() +
geom_mosaic(aes(product(sex,species), fill = sex))

16

female

male

Adelie Chinstrap Gentoo
species

se
x

sex

female

male

Using the Wrong Type of Plot

It is certainly not the end of the world if you choose a type of plot that is not appropriate
for the variables that you are considering, but it is an important skill to be able to identify
when an inappropriate plot has been created. I would like to give you some examples of poorly
chosen plots, where the plots do not provide the reader with very much (or any) information:

train %>%
filter(!is.na(species)) %>%
ggplot() +
geom_point(aes(x = bill_length_mm, y = species))

17

Adelie

Chinstrap

Gentoo

40 50 60
bill_length_mm

sp
ec

ie
s

train %>%
ggplot() +
geom_bar(aes(x = bill_length_mm))

0

2

4

6

40 50 60
bill_length_mm

co
un

t

18

train %>%
filter(!is.na(sex)) %>%
ggplot() +
geom_point(aes(x = sex, y = species))

Adelie

Chinstrap

Gentoo

female male
sex

sp
ec

ie
s

From the examples above, you should see that understanding the type of variable that you
are considering is an important part of data visualization! Fix each of the plots by choosing a
better geometry layer.

Tricking Out Your Plots

There are many options for plot customization! One of the most common customizations is
in the axis labels and plot title, which can be controlled with the labs() layer. Additionally,
if you are building a plot with multiple layers, and those layers share common aesthetics, you
can place the aesthetics into the original ggplot() call rather than duplicating them across
the geometry layers.

train %>%
count(year) %>%
ggplot(aes(x = year, y = n)) +
geom_line() +
geom_point() +

19

labs(
x = "Year",
y = "Number of Penguins Observed",
title = "Penguin Observations 2007-2009")

84

85

86

87

88

89

2007.0 2007.5 2008.0 2008.5 2009.0
Year

N
um

be
r

of
 P

en
gu

in
s

O
bs

er
ve

d

Penguin Observations 2007−2009

The tick marks in this plot are not great, since it doesn’t make (from an animal cruelty
perspective) sense to consider half of a penguin. We can adjust the tick marks using the
scale_x_continuous() and scale_y_continuous() layers. The breaks = argument takes a
list of the tick marks that you would like the axis to have. The seq() function has the syntax
seq(min, max, by) and creates a list of numbers from min to max counting by increments
sized according to the by argument.

train %>%
count(year) %>%
ggplot(aes(year, n)) +
geom_line() +
geom_point() +
scale_x_continuous(breaks = seq(2007,2009,1)) +
scale_y_continuous(breaks = seq(110,120,2)) +
labs(title = "Penguin Observations 2007 - 2009",

x = "Year",
y = "Number of Penguins Observed")

20

2007 2008 2009
Year

N
um

be
r

of
 P

en
gu

in
s

O
bs

er
ve

d

Penguin Observations 2007 − 2009

It is also easy to make a plot that separates each of the species of penguin, using the color
aesthetic,

train %>%
count(year, species) %>%
ggplot(aes(year, n, color = species)) +
geom_line() +
geom_point() +
scale_x_continuous(breaks = seq(2007,2009,1)) +
scale_y_continuous(breaks = seq(10,60,10)) +
labs(title = "Penguin Observations 2007 - 2009",

x = "Year",
y = "Number of Penguins Observed",
color = "Species")

21

20

30

40

2007 2008 2009
Year

N
um

be
r

of
 P

en
gu

in
s

O
bs

er
ve

d

Species

Adelie

Chinstrap

Gentoo

Penguin Observations 2007 − 2009

or by the sex of the penguin. In this case, I used a scale_color_discrete() layer to adjust
the labels of the levels of the sex variable to capitalize them, and change NA to “Unknown”.
Notice that we passed two columns to the count() function here, indicating that we wanted
counts computed for each unique combination of sex and year.

train %>%
count(year, sex) %>%
ggplot(aes(year, n, color = sex)) +
geom_line() +
geom_point() +
scale_x_continuous(breaks = seq(2007,2009,1)) +
scale_y_continuous(breaks = seq(10,60,10)) +
scale_color_discrete(labels = c("Female","Male","Unknown")) +
labs(title = "Penguin Observations 2007 - 2009",

x = "Year",
y = "Number of Penguins Observed",
color = "Sex")

22

10

20

30

40

2007 2008 2009
Year

N
um

be
r

of
 P

en
gu

in
s

O
bs

er
ve

d

Sex

Female

Male

Unknown

Penguin Observations 2007 − 2009

It is also possible to make separate plots for each level of a categorical variable, using a
facet_wrap() layer.

train %>%
count(year, sex) %>%
ggplot(aes(year, n, color = sex)) +
geom_line(show.legend = FALSE) +
geom_point(show.legend = FALSE) +
facet_wrap(~ sex) +
scale_x_continuous(breaks = seq(2007,2009,1)) +
labs(title = "Penguin Observations 2007 - 2009",

x = "Year",
y = "Number of Penguins Observed")

23

female male NA

2007 2008 20092007 2008 20092007 2008 2009

10

20

30

40

Year

N
um

be
r

of
 P

en
gu

in
s

O
bs

er
ve

d

Penguin Observations 2007 − 2009

Final Thoughts

I’ve given you a ton of information here- please don’t feel overwhelmed! I am intending this
document to be a place that you can come back to reference and copy and paste from. There
is also a lot of support online through the ggplot2 documentation, the R Graph Gallery, and
sites like Stack Overflow where you can get additional information and tips on creating data
visualizations using R. If you want a full course on tricking out your plots with ggplot(),
check out this extensive tutorial from Ced Scherer.

24

https://ggplot2.tidyverse.org/reference/
https://www.r-graph-gallery.com/
https://www.cedricscherer.com/2019/08/05/a-ggplot2-tutorial-for-beautiful-plotting-in-r/

	Data Visualization and the Grammar of Graphics
	Our Data
	The Anatomy of ggplot()
	Choosing Effective Data Visualizations
	Single Numerical Variable
	Single Categorical Variables
	Numerical Variable vs. Numerical Variable
	Categorical Variable vs. Numerical Variable
	Categorical Variable vs. Categorical Variable
	Using the Wrong Type of Plot

	Tricking Out Your Plots
	Final Thoughts

