
Enter the Tidyverse: An Introduction to Tidy
Data Analysis in R

August 3, 2024

Table of contents

Objectives . 1
Installing and Loading Packages . 2
Loading Data . 2
Viewing Data . 3
Manipulating Data . 5

Pipes %>% . 5
Restricting Data . 6

Filtering Rows (filter()) . 6
Selecting Columns (select()) . 7
Combining the Two . 8

Summarizing Data . 9
Summarizing Categorical Data with Counts . 9
Summarizing Numerical Data . 11

Transforming Data . 13
Final Thoughts . 14

Objectives

This notebook addresses the following items.

• How do I install and load packages in R? In particular we’ll work with the tidyverse.
• How do I read data into R from both local and remote sources?
• How do I interact with, and manipulate, data using the tools and principles of the

tidyverse?

1

Installing and Loading Packages

We can install R packages using the command install.packages("PACKAGE_NAME"). Once
packages are installed, we can load them into an R Session by running library(PACKAGE_NAME).
While packages only need to be installed once, they must be loaded in each R Session you
intend to use them in (note: an R Session begins when R/RStudio are opened and ends
when they are closed or terminated). We can install and load the tidyverse by running the
code below:

install.packages("tidyverse")
library(tidyverse)

1. Open RStudio and run these commands in the Console pane (left/lower-left). We’ll be
using the kableExtra and tidymodels “packages” in our course – install both of these
packages as well. Load the kableExtra package since we’ll be using it here.

Loading Data

Now that you have the tidyverse loaded, the next thing we’ll need is actual data to manip-
ulate. The tidyverse comes with a few standard data sets for practicing with, but we’ll be
much more interested in working with our own data which we’ll either find locally (stored on
your own computer) or remotely (accessed via a web URL). The tidyverse includes several
functions for reading data in a variety of formats:

• read_csv("PATH_TO_FILE") can be used to read data from a comma separated values
(csv) file.

• read_delim("PATH_TO_FILE", delim = "DELIMITER") is a more general version of the
read_csv() function – we can use this to read text files whose delimiter is something
other than a comma. Common delimiters are the tab (\t) or space (\s).

• read_excel("PATH_TO_FILE", sheet = "SHEET_NAME") can be used to read data from
a particular sheet within an xls or xlsx file.

The following examples show how we can read a variety of files into an R Session.

#Read the MAT241 sheet from the grades.xls file in
#the Spring 2021 folder on my computer's desktop
grades <- read_excel("C:/Users/agilb/Desktop/Spring 2021/grades.xls", sheet = "MAT241")

#Read in data from a csv file of Tate Gallery Artists housed
#in a public github repository on the web
tate_artists <- read_csv("https://github.com/tategallery/collection/raw/master/artist_data.csv")

2

#Read in data from a csv file of Tate Gallery Artworks housed
#in a public github repository on the web
#*Note* that read_csv() would have worked just fine here too
tate_works <- read_delim("https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/data/2021/2021-01-12/artwork.csv", delim = ",")

Viewing Data

Now that we’ve got data, the first thing we should do is look at it. There are a few really
handy R functions for getting a feel for the data you have access to. The View(), head(),
tail(), and glimpse() functions are four that are really commonly used. For the remainder
of this notebook we’ll use a data frame called mpg which is built into the tidyverse.

• Running View(mpg) will open a file viewer which allows you to navigate the data frame
in a familiar spreadsheet format.

• Using head(mpg) and tail(mpg) give us a convenient method for looking at the first six
and last six rows of a data frame, respectively. This is typically enough to give us an
idea of the type of data we are working with. Running both of these functions can also
make us aware of potential inconsistencies in data collection.
head(mpg) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model displ year cyl trans drv cty hwy fl class
audi a4 1.8 1999 4 auto(l5) f 18 29 p compact
audi a4 1.8 1999 4 manual(m5) f 21 29 p compact
audi a4 2.0 2008 4 manual(m6) f 20 31 p compact
audi a4 2.0 2008 4 auto(av) f 21 30 p compact
audi a4 2.8 1999 6 auto(l5) f 16 26 p compact
audi a4 2.8 1999 6 manual(m5) f 18 26 p compact

tail(mpg) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model displ year cyl trans drv cty hwy fl class
volkswagen passat 1.8 1999 4 auto(l5) f 18 29 p midsize
volkswagen passat 2.0 2008 4 auto(s6) f 19 28 p midsize
volkswagen passat 2.0 2008 4 manual(m6) f 21 29 p midsize

3

volkswagen passat 2.8 1999 6 auto(l5) f 16 26 p midsize
volkswagen passat 2.8 1999 6 manual(m5) f 18 26 p midsize
volkswagen passat 3.6 2008 6 auto(s6) f 17 26 p midsize

– Note that the kable() %>% kable_styline(bootsrap_options = c("hover",
"striped")) commands are used to produce visually appealing tables in our
html output – they don’t actually do anything to transform our data. You are
encouraged (though not required) to use these lines when you want to print out
tabular output. You can see what the output looks like without using kableExtra
below. I’ll continue to utilize kableExtra throughout our course.

head(mpg)

A tibble: 6 x 11
manufacturer model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>

1 audi a4 1.8 1999 4 auto(l5) f 18 29 p compa~
2 audi a4 1.8 1999 4 manual(m5) f 21 29 p compa~
3 audi a4 2 2008 4 manual(m6) f 20 31 p compa~
4 audi a4 2 2008 4 auto(av) f 21 30 p compa~
5 audi a4 2.8 1999 6 auto(l5) f 16 26 p compa~
6 audi a4 2.8 1999 6 manual(m5) f 18 26 p compa~

tail(mpg)

A tibble: 6 x 11
manufacturer model displ year cyl trans drv cty hwy fl class
<chr> <chr> <dbl> <int> <int> <chr> <chr> <int> <int> <chr> <chr>

1 volkswagen passat 1.8 1999 4 auto(l5) f 18 29 p mids~
2 volkswagen passat 2 2008 4 auto(s6) f 19 28 p mids~
3 volkswagen passat 2 2008 4 manual(m6) f 21 29 p mids~
4 volkswagen passat 2.8 1999 6 auto(l5) f 16 26 p mids~
5 volkswagen passat 2.8 1999 6 manual(m5) f 18 26 p mids~
6 volkswagen passat 3.6 2008 6 auto(s6) f 17 26 p mids~

• Running glimpse(mpg) provides us with a bit more technical information about how R
is interpreting the columns of the mpg data frame. Knowing how R is interpreting our
variables (columns) is important because certain operations are possible with numerical
data but are not possible with categorical data, and vice-versa. Common data types in
R are chr/fct (categorical data) and num/dbl/int (numerical data).
glimpse(mpg)

4

Rows: 234
Columns: 11
$ manufacturer <chr> "audi", "audi", "audi", "audi", "audi", "audi", "audi", "~
$ model <chr> "a4", "a4", "a4", "a4", "a4", "a4", "a4", "a4 quattro", "~
$ displ <dbl> 1.8, 1.8, 2.0, 2.0, 2.8, 2.8, 3.1, 1.8, 1.8, 2.0, 2.0, 2.~
$ year <int> 1999, 1999, 2008, 2008, 1999, 1999, 2008, 1999, 1999, 200~
$ cyl <int> 4, 4, 4, 4, 6, 6, 6, 4, 4, 4, 4, 6, 6, 6, 6, 6, 6, 8, 8, ~
$ trans <chr> "auto(l5)", "manual(m5)", "manual(m6)", "auto(av)", "auto~
$ drv <chr> "f", "f", "f", "f", "f", "f", "f", "4", "4", "4", "4", "4~
$ cty <int> 18, 21, 20, 21, 16, 18, 18, 18, 16, 20, 19, 15, 17, 17, 1~
$ hwy <int> 29, 29, 31, 30, 26, 26, 27, 26, 25, 28, 27, 25, 25, 25, 2~
$ fl <chr> "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", "p", "p~
$ class <chr> "compact", "compact", "compact", "compact", "compact", "c~

Manipulating Data

Now that we know how to load and view our data, let’s talk about manipulating it. We can
restrict the data we are working with, produce summaries of the data, transform the data, and
more.

Pipes %>%

Pipes are a functionality that is included in a package that is part of tidyverse library. At
first, the syntax may seem a bit strange, but pipes allow you to easily manipulate data without
having to rename and save the dataset along the way. I strongly encourage you get used to
working with pipes! In the previous section we saw how to use R’s head() function to look at
the first six rows of the dataset. Here’s how to achieve the same outcome with the use of the
pipe (%>%) operator.

mpg %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model displ year cyl trans drv cty hwy fl class
audi a4 1.8 1999 4 auto(l5) f 18 29 p compact
audi a4 1.8 1999 4 manual(m5) f 21 29 p compact
audi a4 2.0 2008 4 manual(m6) f 20 31 p compact
audi a4 2.0 2008 4 auto(av) f 21 30 p compact
audi a4 2.8 1999 6 auto(l5) f 16 26 p compact

5

audi a4 2.8 1999 6 manual(m5) f 18 26 p compact

You can read the code above as saying “take the mpg dataset, and plug it into the head()
function”. Putting head() indented on a new line is not necessary for the code to work, but it
does make the code easier to read. This new method of asking for the head() of the dataset
may seem silly and inefficient, but the real magic of the pipe is that it allows us to chain
operations together in a way that mimics the way humans think about instructions. We’ll see
this in action as we get exposure to more data manipulation tools below.

Restricting Data

The most common methods for restricting data deal with filtering out rows or columns so that
we are only working with a subset of our original data set.

Filtering Rows (filter())

Sometimes we are not interested in all of the observations in a particular dataset, but only
those satisfying certain criteria. For example, maybe we only want to see vehicles falling into
the class of subcompact cars. The filter() function will allow us to get rid of all other classes
of vehicle.

mpg %>%
filter(class == "subcompact") %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model displ year cyl trans drv cty hwy fl class
ford mustang 3.8 1999 6 manual(m5) r 18 26 r subcompact
ford mustang 3.8 1999 6 auto(l4) r 18 25 r subcompact
ford mustang 4.0 2008 6 manual(m5) r 17 26 r subcompact
ford mustang 4.0 2008 6 auto(l5) r 16 24 r subcompact
ford mustang 4.6 1999 8 auto(l4) r 15 21 r subcompact
ford mustang 4.6 1999 8 manual(m5) r 15 22 r subcompact

We can also use more complex conditions on which rows to see using and (&) and or (|)
statements. Maybe we want to see only those vehicles in the made by subaru or getting at
least a 35 highway mile per gallon rating (hwy).

6

mpg %>%
filter(manufacturer == "subaru" | hwy >= 35) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model displ year cyl trans drv cty hwy fl class
honda civic 1.8 2008 4 auto(l5) f 25 36 r subcompact
honda civic 1.8 2008 4 auto(l5) f 24 36 c subcompact
subaru forester awd 2.5 1999 4 manual(m5) 4 18 25 r suv
subaru forester awd 2.5 1999 4 auto(l4) 4 18 24 r suv
subaru forester awd 2.5 2008 4 manual(m5) 4 20 27 r suv
subaru forester awd 2.5 2008 4 manual(m5) 4 19 25 p suv

Selecting Columns (select())

Similarly to the way we can filter rows, we can select only those columns we are interested in.
We can pass the names of the columns we are interested in to R’s select() function so that
we only see those selected columns returned.

mpg %>%
select(manufacturer, model, year, cty, hwy, class) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model year cty hwy class
audi a4 1999 18 29 compact
audi a4 1999 21 29 compact
audi a4 2008 20 31 compact
audi a4 2008 21 30 compact
audi a4 1999 16 26 compact
audi a4 1999 18 26 compact

We can also select all columns except certain ones by preceding the column name with a -.

7

mpg %>%
select(-displ,-cyl) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model year trans drv cty hwy fl class
audi a4 1999 auto(l5) f 18 29 p compact
audi a4 1999 manual(m5) f 21 29 p compact
audi a4 2008 manual(m6) f 20 31 p compact
audi a4 2008 auto(av) f 21 30 p compact
audi a4 1999 auto(l5) f 16 26 p compact
audi a4 1999 manual(m5) f 18 26 p compact

The select() function is also useful for changing the order of the columns.

mpg %>%
select(cty, hwy, manufacturer) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

cty hwy manufacturer
18 29 audi
21 29 audi
20 31 audi
21 30 audi
16 26 audi
18 26 audi

Combining the Two

We can combine filter() and select() through the pipe as well. For any pipe, the result
of the “upstream” code (the code before the pipe) is passed into the function that follows the
pipe.

8

mpg %>%
filter(year >= 2005) %>%
select(manufacturer, model, year, cty, hwy, class) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model year cty hwy class
audi a4 2008 20 31 compact
audi a4 2008 21 30 compact
audi a4 2008 18 27 compact
audi a4 quattro 2008 20 28 compact
audi a4 quattro 2008 19 27 compact
audi a4 quattro 2008 17 25 compact

A Note on Pipes: The advantage to the pipe operator is probably pretty clear by now. The
code we just wrote says take the mpg data set, filter it so that we only see cars manufactured
since 2005, show me only the few columns I am interested in, and just let me see the first six
rows for now. The alternative to this would be writing code that looks a lot less readable:

head(select(filter(mpg, year >= 2005), manufacturer, model, year, cty, hwy, class))

Summarizing Data

There are lots of ways we can summarize our data. We can provide simple counts, compute
averages, even build out our own summary functions.

Summarizing Categorical Data with Counts

We can start with a simple question like, how many cars from each manufacturer are contained
in this dataset? To answer this, we simply pipe the mpg data frame into the count() function,
identifying the manufacturer column as the column we wish to count.

mpg %>%
count(manufacturer) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

9

manufacturer n
audi 18
chevrolet 19
dodge 37
ford 25
honda 9
hyundai 14

The counts are displayed in alphabetical order by manufacturer. We might be interested in
the most well-represented manufacturers. We’ll do this with arrange() – we can pass this
function the argument desc(n) to say that we want to arrange by our new count column in
descending order, and let’s ask for the top 10 rows instead of the top 6.

mpg %>%
count(manufacturer) %>%
arrange(desc(n)) %>%
head(n = 10) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer n
dodge 37
toyota 34
volkswagen 27
ford 25
chevrolet 19
audi 18
hyundai 14
subaru 14
nissan 13
honda 9

Let’s say we wanted to know how many different models of car each manufacturer has released
since the year 2000. This is a more complicated question. We would first need to filter the
data so that we are only considering cars manufactured since the year 2000. Then we would
subset to include only the manufacturer and model columns. There are lots of duplicates
here, so we would want to remove them with a function called distinct(), and then finally
we could count occurrences within each manufacturer

10

mpg %>%
filter(year >= 2000) %>%
select(manufacturer, model) %>%
distinct() %>%
count(manufacturer) %>%
arrange(desc(n)) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer n
toyota 6
chevrolet 4
dodge 4
ford 4
volkswagen 4
audi 3

Summarizing Numerical Data

Summarizing categorical data is most often done with counts, but we’ve got many more choices
when we are working with numerical data. We have several measures of center or spread that
we could choose from – we could even define our own metrics. Let’s say we wanted to know
the median highway mile per gallon rating across all vehicles in our dataset. We’ll need the
help of R’s summarize() function as well as the median() function for this.

mpg %>%
summarize(median_hwy = median(hwy)) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

median_hwy
24

With the use of summarize() we can get multiple summaries at once. Let’s compute the mean
and standard deviation for both the highway and city mile per gallon ratings across all of the
vehicles in our data set.

11

mpg %>%
summarize(mean_hwy = mean(hwy), std_deviation_hwy = sd(hwy), mean_cty = mean(cty), std_deviation_cty = sd(cty)) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

mean_hwy std_deviation_hwy mean_cty std_deviation_cty
23.44017 5.954643 16.85897 4.255946

It might be useful if we could get grouped summary statistics. Let’s use group_by() to see
how these measures vary across the different vehicle classes.

mpg %>%
group_by(class) %>%
summarize(mean_hwy = mean(hwy), std_deviation_hwy = sd(hwy), mean_cty = mean(cty), std_deviation_cty = sd(cty)) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

class mean_hwy std_deviation_hwy mean_cty std_deviation_cty
2seater 24.80000 1.303840 15.40000 0.5477226
compact 28.29787 3.781620 20.12766 3.3854999
midsize 27.29268 2.135930 18.75610 1.9465416
minivan 22.36364 2.062655 15.81818 1.8340219
pickup 16.87879 2.274280 13.00000 2.0463382
subcompact 28.14286 5.375012 20.37143 4.6023377
suv 18.12903 2.977973 13.50000 2.4208791

Let’s arrange the result here by mean highway mile per gallon rating in the default ascending
order.

mpg %>%
group_by(class) %>%
summarize(mean_hwy = mean(hwy), std_deviation_hwy = sd(hwy), mean_cty = mean(cty), std_deviation_cty = sd(cty)) %>%
arrange(mean_hwy) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

12

class mean_hwy std_deviation_hwy mean_cty std_deviation_cty
pickup 16.87879 2.274280 13.00000 2.0463382
suv 18.12903 2.977973 13.50000 2.4208791
minivan 22.36364 2.062655 15.81818 1.8340219
2seater 24.80000 1.303840 15.40000 0.5477226
midsize 27.29268 2.135930 18.75610 1.9465416
subcompact 28.14286 5.375012 20.37143 4.6023377
compact 28.29787 3.781620 20.12766 3.3854999

That’s pretty informative although not totally surprising. Subcompact cars seem to have a
high level of variation in their mpg ratings though!

Transforming Data

Often, you may be in a situation where you would like to create new columns, using the
existing columns. This can be done using the mutate() command. The syntax is

dataset %>%
mutate(new_column_name = function_of_old_columns)

In the mpg dataset, let’s add a column which is the ratio between the city cty and highway
hwy gas milages, and use the arrange() function to find cars with the highest city to highway
gas milages:

mpg %>%
mutate(mpg_ratio = cty/hwy) %>%
select(manufacturer,model,cty,hwy,mpg_ratio) %>%
arrange(desc(mpg_ratio)) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model cty hwy mpg_ratio
nissan pathfinder 4wd 15 17 0.8823529
toyota 4runner 4wd 15 17 0.8823529
toyota toyota tacoma 4wd 15 17 0.8823529
honda civic 28 33 0.8484848

13

toyota toyota tacoma 4wd 15 18 0.8333333
chevrolet k1500 tahoe 4wd 14 17 0.8235294

Once pretty common step in an analysis is to create a categorical column from a variable
which was originally numeric. In order to do this we can use the if_else() function. The
three arguments of if_else() are a condition, and the values you want to fill if the condition
is true or false, respectively.

mpg %>%
mutate(pre_2000 = if_else(year < 2000, "yes", "no")) %>%
select(manufacturer,model,year,pre_2000) %>%
head() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

manufacturer model year pre_2000
audi a4 1999 yes
audi a4 1999 yes
audi a4 2008 no
audi a4 2008 no
audi a4 1999 yes
audi a4 1999 yes

Final Thoughts

There is a lot more to learn about data manipulation and R in general. Sticking to the
tidyverse and the other package groups within the tidy-ecosystem (ie. tidytext, tidymodels,
etc.) will be beneficial because they are all built on common syntax and programmatic prin-
ciples. You can read more about this in the TidyTools Manifesto.

You won’t be an expert after working through this document, but it should provide you with
a solid start. Please feel free to add your own notes to this markdown file as we encounter
more advanced functionality.

14

https://tidyverse.tidyverse.org/articles/manifesto.html

	Objectives
	Installing and Loading Packages
	Loading Data
	Viewing Data
	Manipulating Data
	Pipes %>%
	Restricting Data

	Filtering Rows (filter())
	Selecting Columns (select())
	Combining the Two
	Summarizing Data

	Summarizing Categorical Data with Counts
	Summarizing Numerical Data
	Transforming Data

	Final Thoughts

