Beyond Linear Regression

August 3, 2024

Table of contents

Recap
Motivation e e e e e
Objectives o o
The Data e e e e
Specifying New Classes of Model oo
Model-Specific Recipes
Workflow Sets Rather than Single-Model Workflows
Fitting and Assessing a Workflow Set
SUMMATY © . . o v e e e e e
A Look Ahead e

O© © O Ui W W W~

Recap

Up to this point, we’ve spent our time building, assessing, and interpreting models of the
form E[y] = By + By + Boxy + -+ + Brxs. We began with simple linear regressors which
included a single predictor variable. We then moved to multiple linear regressors including
several terms containing [assumedly| independent predictors. We relaxed this assumption
slightly to allow for higher-order terms — terms with a single variable raised to a higher power
or terms containing an interaction (product) between two or more predictors. Most recently,
we encountered the notion of regularization, which is a term for a technique to constrain our
models and reduce the likelihood that a model becomes overfit. While they utilize a slightly
different fitting procedure, the Ridge Regression and LASSO models took the form of our
familiar linear regression model — a linear combination of the available predictors.

Motivation

There’s no need to be tied to models of the form E [y] = B+ /5,2, +5yx9++ ;). Indeed, any
“model” which outputs a numeric prediction can be considered a regression model. Regression
simply eludes to the fact that we are predicting a numerical response. There are many classes
of model which can be built for this end. Two of the most accessible model classes appear
below.

o KNN Regressors: k-nearest neighbors (KNN) regressors assume that observations
are most like those observations which are “closest” to them. Such models depend on
computing distance between observations such that they can aggregate the responses on
those near neighbors to compute a predicted response for any new obervations.

— KNN models are very sensitive to the parameter k, which determines the number
of nearest neighbors the model allows to vote on the predicted response.

¢ Decision-Tree Regressors: are regression models which are built using a decision-tree
structure (If this, then that..Otherwise..). Since they mimic our own decision-making
processes, these decision tree models are very interpretable, even for those people without
a technical background.

— Decision-tree models are very prone to overfitting, so we need to use reqularization
to constrain them.

In tackling regression problems, we aren’t even limited to using a single model. We can build
several models for use in either parallel or sequential arrangements.

e Random-Forest Regressors: are collections of trees which, individually may make
poor predictions, however, when aggregated (averaged), make much stronger predictions.
The intuition behind this idea is commonly referred to as the Wisdom of the Crowd.

— There are some tricks required for a random-forest regressor to be effective. The
prediction errors made by individual trees must be uncorrelated. In order to make
this happen, we do two things:

x Each tree is trained on a slightly different dataset, obtained using a procedure
called bootstrapping.

*x For each tree, and at each juncture, only a randomly selected subset of the
predictors are available for the tree to ask questions about.

e« Boosted Models: are a class of models in which a sequence of very weak learners
is trained (these weak learners may be simple linear regression models, single question
decision trees, or other highly biased models). The first model in the sequence predicts
the value of the response variable. The second model predicts the residual error (the
prediction error) made by the first model. The third model predicts the remaining bit
of error and so on...

https://youtu.be/iOucwX7Z1HU

— These models are very sensitive to the number of boosting iterations. Too many
rounds of boosting results in an overfit model while too few can result in a model
which is underfit.

Due to the nature of these ensembles of models, interpretation can be difficult (or impossible).
That being said, they can have excellent predictive value!

Objectives

In this notebook, we’ll accomplish the following:

e See how to create a variety of regression model specifications using the tidymodels
framework.

e Combine model specifications and their corresponding recipes into a workflow_set ().

o Use cross-validation to estimate the predictive value for each of the model classes under
consideration.

e Analyze cross-validation performance metrics to identify a “best” model from those con-
sidered in the workflow set.

o Fit that best model and use it to make predictions on new data.

The Data
Choose a dataset to use..I’'m using ames as a placeholder for now.

ames_known_price <- ames %>’
filter(!is.na(Sale_Price))
ames_split <- initial_split(ames_known_price, prop = 0.9)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)

ames_folds <- vfold cv(ames_train, v = 10)

Specifying New Classes of Model

The beautiful thing about the {tidymodels} framework that we’ve been utilizing is that it is
standardized across all model types. Regardless of the model class, we’ll

¢ select a model specification and set its fitting engine as well as any hyperparameter values
(more on these later).
e create a recipe including a formula and any necessary feature engineering steps

To see a list of many available model classes, check out the parsnip model finder. The parsnip
package is what {tidymodels} is using for model definitions.

Let’s create four new model specifications below. We’ll use linear_reg(), decision_tree(),
nearest_neighbor (), and rand_forest () to create a linear regressor, decision tree, k-nearest
neighbor, and random forest regressor respectively. Each of the latter three models can be
utilized for regression or classification, so we’ll need to set_mode () to "regression" for each
of those specifications.

1r_spec <- linear_reg() %>%
set_engine("1m")

tree_reg_spec <- decision_tree(tree_depth = 10, min n = 3) %>%
set_engine("rpart") %>%
set_mode("regression")

knn_reg_spec <- nearest_neighbor(neighbors = 5) %>%
set_engine("kknn") %>%

set_mode("regression")

rf_reg spec <- rand_forest(mtry = 9, trees = 50, min_n = 3) %>%
set_engine("ranger") %>%
set_mode("regression")

You can see the engines available for each model from the parsnip model finder from above.

Model-Specific Recipes

Sometimes you can get away with a single recipe() that will work across all of your model
classes. Be careful though — each model class functions differently and makes different as-
sumptions about your data. For example, a k-nearest neighbors model is distance-based, so
categorical predictors are not natively meaningful for such a model and your predictors must
be scaled so that distances in each feature dimension are comparable to one another (an age
difference of 50 years is a much larger distinction/distance between individuals than a salary
difference of $1,000 per year). Decision tree and random forest models can handle categorical
variables in their raw forms, so we don’t need to obtain dummy variables via step_dummy ()
in order to fit those models.

For the reasons cited above, let’s construct three recipes — one for the linear regressor, one for
the nearest neighbor model and one for the tree-based models.

https://www.tidymodels.org/find/parsnip/

lr_rec <- recipe(Sale_Price ~ ., data = ames_train) %>%
step_impute_median(all_numeric_predictors()) %>%
step_other(all_nominal_predictors()) %>%
step_dummy(all_nominal_predictors())

knn_rec <- recipe(Sale_Price ~ ., data = ames_train) %>%
step_impute_median(all_numeric_predictors()) %>%
step_rm(all_nominal_predictors()) %>%
step_normalize(all_numeric_predictors())

tree_rec <- recipe(Sale_Price ~ ., data = ames_train) %>/
step_impute_median(all_numeric_predictors()) %>%
step_other(all_nominal_predictors())

Workflow Sets Rather than Single-Model Workflows

Rather than packaging each model specification and recipe into its own unique workflow(),
we’ll utilize a workflow_set () which allows for multiple models to be trained and compared
all at once. This is much more efficient than building four separate workflows and comparing
the results pairwise.

rec_list <- list(
1lr = 1r_rec,
knn = knn_rec,
treel = tree_rec,
tree2 tree_rec

model list <- list(
1r = 1r_spec,
knn = knn_reg_spec,
tree = tree_reg_spec,
rf = rf_reg_spec

my_models_wfs <- workflow_set(rec_list, model_list, cross = FALSE)
my_models_wfs

A workflow set/tibble: 4 x 4
wflow_id info option result
<chr> <list> <list> <list>

1 1r_1r <tibble [1 x 4]> <opts[0]> <list
2 knn_knn <tibble [1 x 4]> <opts[0]> <list
3 treel_tree <tibble [1 x 4]> <opts[0]> <1list
4 tree2_rf <tibble [1 x 4]> <opts[0]> <list

Fitting and Assessing a Workflow Set

[0]>
[0]>
[0]>
(01>

In order to fit and assess a workflow set, we’ll need to do just a bit more work than simply calling
fit() or fit_resamples(). This is because a workflow_set() is a special objects which
requires a fit to be run for each combination of model and recipe (preprocessor). We’ll begin
by setting the grid_control() —a set of common options for each fit. Here, we’ll select to save
the predictions made by each model/preprocessor, use parallel processing wherever possible
in order to speed up the fitting and assessing process, and to save the resulting workflows so
that we don’t need to refit from scratch if we find a model and preprocessor combination that
we like. Once we have these grid control settings, then we’ll use workflow_map() to fit and
assess our model/preprocessor combinations. The arguments we're using for workflow_map ()
are a seed (for reproducibility), the resamples we are fitting over (our cross-validation folds),

and then the control which is our grid control object.

grid_ctrl <- control_grid(
save_pred = TRUE,
parallel_over = "everything",

save_workflow = TRUE

)

grid_results <- my_models_wfs %>%
workflow_map(
seed = 123,
resamples = ames_folds,

control = grid_ctrl)

> A | warning: prediction from rank-deficient
There were issues with some computations A:
There were issues with some computations A:
There were issues with some computations A:

fit; consider predict(., rankdeficient="NA")

x1

x3

x10

grid_results %>%

autoplot ()
rmse rsq
45000
0.90
preprocessor
4 * recipe
40000 0.854
®
Q
© 35000 1 0.80 model
> decision_tree
-o— linear_reg
i 0.754 ~
30000 -»- nearest_neighbor
rand_forest
0.70 4
25000 -5 T J T T ' ' '
1 2 3 4 1 2 3 4

Workflow Rank

Passing the result of fitting the models in the workflow set to the autoplot () method allows
us to quickly compare the performance of each model and preprocessor combination. We can
see from the plot that the decision tree regressor is confidently the worst model out of the
group — it has the highest RMSE and lowest R-Squared value. The Random Forest regressor
seems to be outperforming the the nearest neighbor model and the linear regressor, although
the confidence bounds on performance for the random forest and linear model overlap quite
a bit. For this reason, we may keep the random forest and linear regression models in the
running for “best model”.

We'll extract that workflow and and select the best parameters (more on this next time)
according to the RMSE metric. We’ll finalize the workflow and complete a last fit on the
full set of training data. Once we’ve done that, we’ll collect the predictions made for our test
observations and then plot a comparison of our predictions versus the true observed Sale Prices
for homes.

best_results <- grid_results %>’
extract_workflow_set result("tree2 rf") %>%
select_best(metric = "rmse")

rf_test_results <- grid_results %>7
extract_workflow("tree2 rf") %>%

finalize workflow(best results) %>%
last_fit(split = ames_split)

rf_test_results %>%
collect metrics() %>Y%
kable() %>%
kable_styling()

.metric .estimator .estimate .config
rmse standard 2.180784e+4-04 Preprocessorl_Modell
rsq standard 9.315443e-01 Preprocessorl_Modell

rf_test_results %>/
collect_predictions() %>%
ggplot () +
geom_abline(slope = 1, intercept = 0, color = "gray50", 1lty = "dashed") +
geom_point(aes(x = Sale_Price, y = .pred), alpha = 0.5) +
coord_obs_pred() +
labs(x = "observed", y = "predicted")

4e+05 4

predicted

2e+05 -

0e+00 2e+05 4e+05
observed

Summary

In this notebook we introduced a few new classes of regression model — in particular, k nearest
neighbors and decision trees. We also introduced the notion of an ensemble of models and
highlighted that these ensembles can consist of models in series (like the gradient boosting
model) or in parallel (like the random forest). We saw how to utilize a workflow_set ()
in conjunction with grid_controls() and a workflow_map() in order to fit and compare a
collection of models.

A Look Ahead

For all of our models, we’ve made decisions about the model before it ever saw the training
data.

o For linear regressors, we need to decide on which predictors to utilize, and how to utilize
them. Should we include higher-order polynomial terms, interactions, etc?

o For the k nearest neighbors regressor, we needed to choose the number of closest neighbors
given voting privileges (neighbors) in order to make a prediction.

o For the decision tree regressor, we needed to decide on a mazimum depth (tree_depth)
and a minimum number of records to qualify for splitting (min_n).

o For the random forest regressor, we needed to decide on the number of trees (trees), the
number of predictors available for each split decision (mtry), and the minimum number
of records to qualify for splitting (min_n).

o While we didn’t utilize ridge regression or the LASSO in this notebook, the penalty and
mixture parameters needed to be chosen before we trained our models in the previous
notebook.

These parameters, which must be set prior to model training, are called hyperparameters.
You can see the list of available hyperparameters for each model class from the parsnip
model finder. How do we know that we’ve selected the right values for these model-tuning
hyperparameters? We don’t — however, we should keep calm, and cross-validate. We’ll discuss
more about this in the next set of notes. See you there!

https://www.tidymodels.org/find/parsnip/
https://www.tidymodels.org/find/parsnip/

	Recap
	Motivation
	Objectives
	The Data
	Specifying New Classes of Model
	Model-Specific Recipes
	Workflow Sets Rather than Single-Model Workflows
	Fitting and Assessing a Workflow Set
	Summary
	A Look Ahead

