
Variable Selection Methods: Regularization
with Ridge and LASSO

August 17, 2024

Table of contents

Recap . 1
Motivation . 2
Objectives . 3
Ordinary Least Squares . 3
Ridge Regression . 4
Least Absolute Shrinkage and Selection Operator (LASSO) 4

Some Feature PreProcessing Concerns . 5
Fitting a Model Using Ridge Regression or the LASSO 5
Ummm. . . Great – So What Do I Use and When Do I Use It? 6

Implementing Ridge Regression and the LASSO . 6
Implementing Ridge Regression . 7
Implementing the LASSO . 12

Summary . 17

Recap

With Cross-Validation, we’ve supercharged our modeling powers. We’ve made our model
performance estimates much more reliable, which gives us greater confidence in understanding
the predictive power (or lack-thereof) in our models. We’ve become much more responsible
modelers, in this sense. We’ll see again soon that cross-validation can actually do much more
for us than just provide more reliable performance estimates than the validation-set approach
did. For now though, we shift focus slightly to the question – how do we know which predictors
should be included in our model?

1

Motivation

When we first introduced multiple linear regression, we took an approach in which we built a
“large” model – a model that included most/all of our available predictors. Once we had that
model, we used a procedure called backward elimination to eliminate terms from our model if
they were associated with p-values above the 5% significance threshold. We could have taken
the opposite approach, starting with an empty model, adding predictors/terms one at a time –
a process called forward selection.

With both of these methods, we’re allowing our model to be quite greedy. It may be helpful
to think of these processes as allowing our model to go “shopping” for predictors – in the
backward selection paradigm, the model begins by adding every item in the store to its shopping
cart, and then carefully places the ones it doesn’t want back on the shelves – in the forward
selection paradigm, the model begins with an empty cart and adds its favorite items one-by-one
into its shopping cart. This seems quite reasonable at first, but we’re engaging in quite risky
behavior.

• From a purely statistical standpoint, we’re evaluating lots of t-tests in determining
whether model terms are statistically significant or not. The likelihood of making at least
one Type I Error (saying that a model term is statistically significant, when it is not so
in the population) becomes very large in these processes.

• From a model-fit perspective, the more predictor variables a model has, the more flexible
it is – the more flexible a model is, the better it will fit the training data and the more
likely it is to become overfit.

By allowing our model to “shop” freely for its predictors, we are enticing our model to overfit
the training data – giving our model a “budget” to spend on its shopping trip would be a really
nice way to lower the likelihood that our model “buys” too many predictors and overfits the
training data.

ñ Optimization Procedures for Model Fitting

All of the models we’ve fit so far in our course use Ordinary Least Squares as the underlying
fitting procedure – we are moving to new waters now. Ridge Regression and LASSO
models belong to a class of model called Generalized Linear Models, although their
fitting procedures under the hood will be different, the consistency of the {tidymodels}
framework allows us to make this change quite simply.

ñ Regularization

The process of applying an additional constraint such as a budget one example of model
constraints commonly referred to as regularization. Regularization techniques are utilized
with lots of model classes to help prevent those models from overfitting our training data.

2

Objectives

After working through this notebook you should be able to:

• Articulate the backward selection approach and how it relates to the multiple linear
regression models we’ve constructed and analyzed so far in our course.

• Discuss forward selection as an alternative to the backward selection process.
• Discuss and implement Ridge Regression and the LASSO as alternatives to Ordinary

Least Squares within the {tidymodels} framework.
• Discuss the benefits and drawbacks for forward- and backward-selection, Ridge Regression,

and the LASSO relative to one another.

Ordinary Least Squares

The process of fitting a model using ordinary least squares is an optimization problem. Simply
put, to fit a model of the form

E [y] = β0 + β1x1 + β2x2 + · · · + βkxk

we minimize the residual sum of squares:

Minimize:
∑

training data
(yobserved − ypredicted)2

Which is equivalent to

Minimize:
∑

training data

(
yobserved −

(
β0 +

k∑
i=1

βixi

))2

This process of choosing values for β0, β1, β2, · · · , βk is called Ordinary Least Squares (OLS),
and it’s what we’ve been using (or, rather R has been using) all semester long to fit our
models.

In OLS, the optimization procedure can freely choose those β values, without any constraint
(OLS is shopping without a budget). Ridge Regression and the LASSO introduce extra
constraints on this optimization problem.

3

Ridge Regression

The process of fitting a model using Ridge Regression is similar to that of using OLS, except
that a constraint on the chosen β coefficients is imposed. That is, using Ridge Regression to fit
a model of the form

E [y] = β0 + β1x1 + β2x2 + · · · + βkxk

Solves the following optimization problem:

Minimize:
∑

training data

(
yobserved −

(
β0 +

k∑
i=1

βixi

))2

Subject To:
k∑

i=1
|βi| ≤ C

Where C can be thought of as a total coefficient budget. That is, it becomes very expensive
for the model to assign lots of non-zero coefficients.

Least Absolute Shrinkage and Selection Operator (LASSO)

The difference between Ridge Regression and the LASSO is in how “spent budget” is calculated.
Instead of summing the absolute values of the β coefficients, we’ll sum their squares. That is,
using LASSO to fit a model of the form

E [y] = β0 + β1x1 + β2x2 + · · · + βkxk

Solves the following optimization problem:

Minimize:
∑

training data

(
yobserved −

(
β0 +

k∑
i=1

βixi

))2

Subject To:
k∑

i=1
β2

i ≤ C

Where C can again be thought of as a total coefficient budget. Because it squares the β
coefficients in the calculation of “budget used”, the LASSO penalizes large coefficients more
than Ridge Regression does. Furthermore, due to the mathematics behind these algorithms,
models fit using the LASSO result in small coefficients being sent to 0. That is, the LASSO
can be used as a variable selection procedure. Models fit with Ridge Regression often leave
several predictors having very small coefficients so, while they don’t have much influence in the
overall model predictions, they do still remain in the model.

4

Some Feature PreProcessing Concerns

If we are going to utilize Ridge Regression or the LASSO, we need to ensure that all of our
predictors are on a standardized scale. Otherwise, predictors/features whose observed values
are large are superficially cheaper for the model to use (because we can attach small coefficients
to them) than features whose observed values are already small. Similarly, features whose
observed values are very small are artificially made more expensive for the model to use because
they demand larger coefficients in order to have influence over model predictions. There are
two very common scaling methods:

• Min/Max scaling projects a variable onto the interval [0, 1], where the minimum observed
value is sent to 0 and the maximum observed value is sent to 1.

– Min/Max scaling for the variable x is done using the formula: x − min (x)
max (x) − min (x) .

– We can add step_range() to a recipe() to min/max scale a feature.

• Standardization converts a variables raw measurements into standard deviations (z-
scores), where the mean of the transformed variable is 0 and the standard deviation of
the transformed variable is 1.

– Standardized scaling for the variable x is done using the formula: x − mean (x)
sd(x)

– We can add step_normalize() to a recipe() to standardize the values of a feature.

Fitting a Model Using Ridge Regression or the LASSO

The tidymodels framework provides us with a standardized structure for defining and fitting
models. Everything we’ve learned about the syntax and workflow for fitting a linear regression
model using OLS can be used to fit these Generalized Linear Models. We’ll just need to
set_engine() to something other than "lm" – specifically, an engine which can fit models
using the constraints defined in the Ridge Regression and LASSO sections above. We’ll use
"glmnet", which requires two additional arguments mixture and penalty.

• The mixture argument is a number between 0 and 1. Setting mixture = 1 results in a
LASSO model, while setting mixture = 0 results in a Ridge Regression model. Values in
between 0 and 1 result in a mixed LASSO/Ridge approach, where the penalty is partially
determined by the Ridge Regression constraint and partially by the LASSO constraint.

• The penalty argument corresponds to the amount of regularization being applied – that
is, the penalty is related to the budget parameter we’ve described earlier.

5

Ummm. . . Great – So What Do I Use and When Do I Use It?

There is some really good news coming – just bear with me!

The choice between Ridge Regression and LASSO depends on your goals. If you are looking
for a tool to help with variable selection, then the LASSO is your choice, since it will result in
less valuable predictors being assigned coefficients of exactly 0. If you are building a predictive
model, you might try both and see which one performs better for your specific use-case.

How do I choose a penalty? As I understand it, there’s no great science to choosing a penalty.
People will typically try values and see what the best ones are for their particular use-case.

So basically I’ve told you about these two new classes of model that help prevent overfitting.
They each require a penalty parameter and I’ve given you no real guidance on how to choose
it. For now, we’ll simply choose a penalty parameter and mention what we could build several
models with different penalty values to try and find one that performs best. I’ll give you a
much better method when we talk about hyperparameter tuning.

Implementing Ridge Regression and the LASSO

There are a few additional concerns with fitting Ridge Regression and LASSO models that we
haven’t needed to deal with prior.

• The glmnet engine requires that no missing values are included in any fold.

– We can omit rows with missing data. (drawback: we are throwing away observations
and we may be drastically reducing the size of our available data)

– We can omit features with missing data. (drawback: we are sacrificing potentially
valuable predictors by omitting them from our model)

– We can impute missing values using a step_impute_*() feature engineering step
in our recipe. (drawback: we are making our best guess at what the missing value
should be, but we are introducing additional uncertainty to our model)

• Because the penalty parameter imposes a budget on coefficients, all of our predictors
must be on the same scale – otherwise, some predictors are artificially cheaper or more
expensive than others to include in our model.

– We can use step_range() or step_normalize() on all_numerical_predictors()
to achieve this.

We’ll filter out the observations with an unknown response (Sale_Price), and we’ll use
step_impute_knn() to use a k-nearest neighbors imputation scheme for any missing values in
our predictor columns. Finally, we’ll use step_normalize() to center and scale our numerical
predictors. Then we’ll proceed as usual.

6

Implementing Ridge Regression

We’ll build and assess a Ridge Regression model first.

set.seed(123)
ames_known_price <- ames %>%

filter(!(is.na(Sale_Price)))
ames_split <- initial_split(ames_known_price, prop = 0.9)
ames_train <- training(ames_split)
ames_test <- testing(ames_split)

ames_folds <- vfold_cv(ames_train, v = 5)

ridge_reg_spec <- linear_reg(mixture = 0, penalty = 0.1) %>%
set_engine("glmnet")

reg_rec <- recipe(Sale_Price ~ ., data = ames_train) %>%
step_normalize(all_numeric_predictors()) %>%
step_impute_knn(all_predictors()) %>%
step_normalize(all_numeric_predictors()) %>%
step_other(all_nominal_predictors()) %>%
step_dummy(all_nominal_predictors())

ridge_reg_wf <- workflow() %>%
add_model(ridge_reg_spec) %>%
add_recipe(reg_rec)

ridge_reg_cv <- ridge_reg_wf %>%
fit_resamples(ames_folds)

ridge_reg_cv %>%
collect_metrics() %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

.metric .estimator mean n std_err .config

rmse standard 3.163600e+04 5 3258.9443024 Preprocessor1_Model1
rsq standard 8.477678e-01 5 0.0205856 Preprocessor1_Model1

7

ridge_reg_cv %>%
collect_metrics(summarize = FALSE) %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

id .metric .estimator .estimate .config

Fold1 rmse standard 4.023294e+04 Preprocessor1_Model1
Fold1 rsq standard 8.121570e-01 Preprocessor1_Model1
Fold2 rmse standard 3.227439e+04 Preprocessor1_Model1
Fold2 rsq standard 8.499513e-01 Preprocessor1_Model1
Fold3 rmse standard 2.373823e+04 Preprocessor1_Model1

Fold3 rsq standard 8.965585e-01 Preprocessor1_Model1
Fold4 rmse standard 3.708400e+04 Preprocessor1_Model1
Fold4 rsq standard 7.915890e-01 Preprocessor1_Model1
Fold5 rmse standard 2.485042e+04 Preprocessor1_Model1
Fold5 rsq standard 8.885830e-01 Preprocessor1_Model1

ridge_reg_fit <- ridge_reg_wf %>%
fit(ames_train)

ridge_reg_fit %>%
tidy() %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

term estimate penalty

Intercept 191818.9719 0.1
Lot_Frontage 635.0426 0.1
Lot_Area 2632.2748 0.1
Year_Built 3643.3324 0.1
Year_Remod_Add 4676.9398 0.1

Mas_Vnr_Area 4539.0144 0.1
BsmtFin_SF_1 -428.1522 0.1
BsmtFin_SF_2 792.9066 0.1
Bsmt_Unf_SF -2277.7734 0.1
Total_Bsmt_SF 5900.9613 0.1

First_Flr_SF 7349.9085 0.1
Second_Flr_SF 9836.1873 0.1

8

Low_Qual_Fin_SF -524.0123 0.1
Gr_Liv_Area 13599.1103 0.1
Bsmt_Full_Bath 2770.9347 0.1

Bsmt_Half_Bath -658.8395 0.1
Full_Bath 4052.4543 0.1
Half_Bath 2013.8465 0.1
Bedroom_AbvGr -1283.6240 0.1
Kitchen_AbvGr -2450.6191 0.1

TotRms_AbvGrd 2934.1361 0.1
Fireplaces 4970.9791 0.1
Garage_Cars 5526.8513 0.1
Garage_Area 2106.3876 0.1
Wood_Deck_SF 1412.6677 0.1

Open_Porch_SF -525.2878 0.1
Enclosed_Porch 1394.0973 0.1
Three_season_porch 495.8018 0.1
Screen_Porch 3635.3907 0.1
Pool_Area -1409.9219 0.1

Misc_Val -5134.1938 0.1
Mo_Sold -454.5277 0.1
Year_Sold -1282.1268 0.1
Longitude 988.5822 0.1
Latitude 4725.5739 0.1

MS_SubClass_One_Story_1945_and_Older -4416.9538 0.1
MS_SubClass_One_Story_1946_and_Newer_All_Styles 3304.0249 0.1
MS_SubClass_One_Story_PUD_1946_and_Newer -3143.7530 0.1
MS_SubClass_Two_Story_1946_and_Newer 324.7893 0.1
MS_SubClass_other 1715.7145 0.1

MS_Zoning_Residential_Medium_Density -5868.1882 0.1
MS_Zoning_other -8029.4040 0.1
Street_other -23696.6799 0.1
Alley_other -104.5784 0.1
Lot_Shape_Slightly_Irregular 2245.2842 0.1

Lot_Shape_other 1938.9597 0.1
Land_Contour_other -408.0211 0.1
Utilities_other -13984.6732 0.1
Lot_Config_CulDSac 10373.2126 0.1
Lot_Config_Inside 376.8869 0.1

Lot_Config_other -5855.1299 0.1

9

Land_Slope_other 5012.1091 0.1
Neighborhood_Edwards -9390.3854 0.1
Neighborhood_Gilbert -16966.9174 0.1
Neighborhood_North_Ames -5558.3609 0.1

Neighborhood_Northridge_Heights 18265.8881 0.1
Neighborhood_Old_Town -7357.2823 0.1
Neighborhood_Somerset 9460.1468 0.1
Neighborhood_other 4718.5160 0.1
Condition_1_Norm 10833.0680 0.1

Condition_1_other 2692.3090 0.1
Condition_2_other -388.4195 0.1
Bldg_Type_TwnhsE -12433.2155 0.1
Bldg_Type_other -12772.5323 0.1
House_Style_One_Story 3970.5877 0.1

House_Style_Two_Story -3677.5124 0.1
House_Style_other -1127.9941 0.1
Overall_Qual_Average -1706.9615 0.1
Overall_Qual_Below_Average -2948.3523 0.1
Overall_Qual_Good 1648.5617 0.1

Overall_Qual_Very_Good 15406.4636 0.1
Overall_Qual_other 29505.5762 0.1
Overall_Cond_Average -2439.3189 0.1
Overall_Cond_Good 4982.5093 0.1
Overall_Cond_other -3768.5434 0.1

Roof_Style_Hip 4932.1920 0.1
Roof_Style_other -4617.6292 0.1
Roof_Matl_other 1693.2505 0.1
Exterior_1st_MetalSd 2168.7468 0.1
Exterior_1st_Plywood 795.5784 0.1

Exterior_1st_VinylSd 851.9245 0.1
Exterior_1st_Wd.Sdng -186.6109 0.1
Exterior_1st_other 6571.8953 0.1
Exterior_2nd_MetalSd 1596.0933 0.1
Exterior_2nd_Plywood -3631.0092 0.1

Exterior_2nd_VinylSd 949.2826 0.1
Exterior_2nd_Wd.Sdng 3755.8799 0.1
Exterior_2nd_other -1258.0924 0.1
Mas_Vnr_Type_None 6482.2932 0.1
Mas_Vnr_Type_Stone 2906.4064 0.1

10

Mas_Vnr_Type_other -8363.1220 0.1
Exter_Qual_Typical -6484.2417 0.1
Exter_Qual_other 15366.6626 0.1
Exter_Cond_Typical -857.9075 0.1
Exter_Cond_other -14473.8030 0.1

Foundation_CBlock -1773.5303 0.1
Foundation_PConc 4484.0142 0.1
Foundation_other 320.5474 0.1
Bsmt_Qual_Good -15251.3685 0.1
Bsmt_Qual_Typical -14338.6875 0.1

Bsmt_Qual_other -14341.2896 0.1
Bsmt_Cond_other -2799.6797 0.1
Bsmt_Exposure_Gd 13803.2479 0.1
Bsmt_Exposure_Mn -5658.9405 0.1
Bsmt_Exposure_No -8614.6482 0.1

Bsmt_Exposure_other -6281.7374 0.1
BsmtFin_Type_1_BLQ -511.8263 0.1
BsmtFin_Type_1_GLQ 7199.5285 0.1
BsmtFin_Type_1_LwQ -4358.6347 0.1
BsmtFin_Type_1_Rec -849.0571 0.1

BsmtFin_Type_1_Unf -1914.3319 0.1
BsmtFin_Type_1_other -2926.1817 0.1
BsmtFin_Type_2_other -2019.5929 0.1
Heating_other -1729.5089 0.1
Heating_QC_Good -2492.5041 0.1

Heating_QC_Typical -5346.1460 0.1
Heating_QC_other -10686.6811 0.1
Central_Air_Y 4072.2257 0.1
Electrical_SBrkr 346.4420 0.1
Electrical_other 301.2078 0.1

Kitchen_Qual_Good -13742.2922 0.1
Kitchen_Qual_Typical -16186.8202 0.1
Kitchen_Qual_other -18648.4382 0.1
Functional_other -15944.3071 0.1
Fireplace_Qu_No_Fireplace 542.6519 0.1

Fireplace_Qu_Typical -1928.1394 0.1
Fireplace_Qu_other 646.1564 0.1
Garage_Type_BuiltIn -941.3937 0.1
Garage_Type_Detchd -1661.7981 0.1
Garage_Type_No_Garage 617.5876 0.1

11

Garage_Type_other -11561.5629 0.1
Garage_Finish_No_Garage 612.2936 0.1
Garage_Finish_RFn -3891.0061 0.1
Garage_Finish_Unf -1754.4046 0.1
Garage_Qual_Typical -1528.9216 0.1

Garage_Qual_other 2247.5272 0.1
Garage_Cond_Typical 2349.5782 0.1
Garage_Cond_other -6338.7852 0.1
Paved_Drive_Paved 4236.6662 0.1
Paved_Drive_other 5735.1255 0.1

Pool_QC_other 10854.0122 0.1
Fence_No_Fence -2304.5540 0.1
Fence_other -1200.1668 0.1
Misc_Feature_other 6997.8461 0.1
Sale_Type_WD -4789.3508 0.1

Sale_Type_other -6853.4085 0.1
Sale_Condition_Normal 8367.5845 0.1
Sale_Condition_Partial 12015.2260 0.1
Sale_Condition_other 7677.5821 0.1

From the regression output above, we can see lots of very small coefficients attached to the
majority of our available predictors.

Implementing the LASSO

The work required to construct a LASSO model is nearly identical. We simply use mixture =
1 in the model specification to signal that we want to use the LASSO constraint instead of the
ridge constraint.

lasso_reg_spec <- linear_reg(mixture = 1, penalty = 0.1) %>%
set_engine("glmnet")

lasso_reg_wf <- workflow() %>%
add_model(lasso_reg_spec) %>%
add_recipe(reg_rec)

lasso_reg_cv <- lasso_reg_wf %>%
fit_resamples(ames_folds)

lasso_reg_cv %>%

12

collect_metrics() %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

.metric .estimator mean n std_err .config

rmse standard 3.245268e+04 5 3148.2028813 Preprocessor1_Model1
rsq standard 8.411357e-01 5 0.0204318 Preprocessor1_Model1

lasso_reg_cv %>%
collect_metrics(summarize = FALSE) %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

id .metric .estimator .estimate .config

Fold1 rmse standard 3.992358e+04 Preprocessor1_Model1
Fold1 rsq standard 8.145726e-01 Preprocessor1_Model1
Fold2 rmse standard 3.363114e+04 Preprocessor1_Model1
Fold2 rsq standard 8.363147e-01 Preprocessor1_Model1
Fold3 rmse standard 2.462751e+04 Preprocessor1_Model1

Fold3 rsq standard 8.892578e-01 Preprocessor1_Model1
Fold4 rmse standard 3.834326e+04 Preprocessor1_Model1
Fold4 rsq standard 7.819507e-01 Preprocessor1_Model1
Fold5 rmse standard 2.573790e+04 Preprocessor1_Model1
Fold5 rsq standard 8.835826e-01 Preprocessor1_Model1

lasso_reg_fit <- lasso_reg_wf %>%
fit(ames_train)

lasso_reg_fit %>%
tidy() %>%
filter(estimate != 0) %>%
kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

term estimate penalty

Intercept 204174.844499 0.1

13

Lot_Frontage 302.118404 0.1
Lot_Area 2652.964700 0.1
Year_Built 5610.573998 0.1
Year_Remod_Add 4367.645860 0.1

Mas_Vnr_Area 4482.646323 0.1
BsmtFin_SF_1 -738.656408 0.1
BsmtFin_SF_2 736.862775 0.1
Bsmt_Unf_SF -2866.828195 0.1
Total_Bsmt_SF 5568.968315 0.1

Second_Flr_SF 6684.251469 0.1
Low_Qual_Fin_SF -1166.224044 0.1
Gr_Liv_Area 25928.430006 0.1
Bsmt_Full_Bath 2439.591819 0.1
Bsmt_Half_Bath -621.816279 0.1

Full_Bath 3013.901185 0.1
Half_Bath 1058.224436 0.1
Bedroom_AbvGr -1847.998427 0.1
Kitchen_AbvGr -2158.528555 0.1
TotRms_AbvGrd 1215.142354 0.1

Fireplaces 6293.765983 0.1
Garage_Cars 7167.390067 0.1
Garage_Area -18.026412 0.1
Wood_Deck_SF 1106.285872 0.1
Open_Porch_SF -916.391841 0.1

Enclosed_Porch 1663.492292 0.1
Three_season_porch 456.706922 0.1
Screen_Porch 3677.763138 0.1
Pool_Area -2354.835149 0.1
Misc_Val -5627.001608 0.1

Mo_Sold -572.996463 0.1
Year_Sold -1369.021517 0.1
Longitude 1733.166334 0.1
Latitude 5384.510158 0.1
MS_SubClass_One_Story_1945_and_Older -4308.968247 0.1

MS_SubClass_One_Story_1946_and_Newer_All_Styles 1678.308280 0.1
MS_SubClass_One_Story_PUD_1946_and_Newer -1480.098139 0.1
MS_SubClass_Two_Story_1946_and_Newer 32.282767 0.1
MS_SubClass_other 6322.081252 0.1
MS_Zoning_Residential_Medium_Density -6101.997383 0.1

14

MS_Zoning_other -9260.875155 0.1
Street_other -22970.598540 0.1
Alley_other -7.656359 0.1
Lot_Shape_Slightly_Irregular 1771.961285 0.1
Lot_Shape_other 1838.909134 0.1

Land_Contour_other -1349.950041 0.1
Utilities_other -9062.911216 0.1
Lot_Config_CulDSac 10270.569626 0.1
Lot_Config_Inside 565.003677 0.1
Lot_Config_other -6278.376017 0.1

Land_Slope_other 4625.142399 0.1
Neighborhood_Edwards -10973.471669 0.1
Neighborhood_Gilbert -19530.932784 0.1
Neighborhood_North_Ames -8414.765814 0.1
Neighborhood_Northridge_Heights 14589.995488 0.1

Neighborhood_Old_Town -11134.705591 0.1
Neighborhood_Somerset 8635.024580 0.1
Neighborhood_other 2810.367615 0.1
Condition_1_Norm 12745.603198 0.1
Condition_1_other 4603.785551 0.1

Condition_2_other -1162.412692 0.1
Bldg_Type_TwnhsE -18596.435680 0.1
Bldg_Type_other -17463.487230 0.1
House_Style_One_Story 10066.653129 0.1
House_Style_Two_Story -8523.299507 0.1

House_Style_other -2571.006941 0.1
Overall_Qual_Average -1436.679065 0.1
Overall_Qual_Below_Average -2595.730854 0.1
Overall_Qual_Good 2280.491136 0.1
Overall_Qual_Very_Good 15680.512980 0.1

Overall_Qual_other 26471.108719 0.1
Overall_Cond_Average -3237.595266 0.1
Overall_Cond_Good 4664.798807 0.1
Overall_Cond_other -3679.502049 0.1
Roof_Style_Hip 3976.513691 0.1

Roof_Style_other -5087.445097 0.1
Exterior_1st_MetalSd 3681.733444 0.1
Exterior_1st_Plywood 1478.941547 0.1
Exterior_1st_VinylSd 1114.089194 0.1
Exterior_1st_Wd.Sdng -137.300127 0.1

15

Exterior_1st_other 7548.520118 0.1
Exterior_2nd_Plywood -4165.802943 0.1
Exterior_2nd_VinylSd 702.891204 0.1
Exterior_2nd_Wd.Sdng 3609.641444 0.1
Exterior_2nd_other -3116.316461 0.1

Mas_Vnr_Type_None 7630.970285 0.1
Mas_Vnr_Type_Stone 2241.854107 0.1
Mas_Vnr_Type_other -6568.695833 0.1
Exter_Qual_Typical -5426.837474 0.1
Exter_Qual_other 10846.988450 0.1

Exter_Cond_Typical -1067.575915 0.1
Exter_Cond_other -13298.737373 0.1
Foundation_PConc 4605.195066 0.1
Bsmt_Qual_Good -23745.004600 0.1
Bsmt_Qual_Typical -24768.334851 0.1

Bsmt_Qual_other -25365.513028 0.1
Bsmt_Cond_other -2662.979330 0.1
Bsmt_Exposure_Gd 12971.464880 0.1
Bsmt_Exposure_Mn -7258.496092 0.1
Bsmt_Exposure_No -9341.789381 0.1

Bsmt_Exposure_other -9581.993387 0.1
BsmtFin_Type_1_BLQ 364.916614 0.1
BsmtFin_Type_1_GLQ 6708.401065 0.1
BsmtFin_Type_1_LwQ -4053.082751 0.1
BsmtFin_Type_1_Unf -124.232722 0.1

BsmtFin_Type_2_other -1766.478865 0.1
Heating_other -2679.276782 0.1
Heating_QC_Good -2153.910215 0.1
Heating_QC_Typical -5213.089203 0.1
Heating_QC_other -10407.381099 0.1

Central_Air_Y 2548.570117 0.1
Electrical_SBrkr 624.529636 0.1
Electrical_other 851.058235 0.1
Kitchen_Qual_Good -24550.199978 0.1
Kitchen_Qual_Typical -27862.653516 0.1

Kitchen_Qual_other -30664.715311 0.1
Functional_other -16889.690718 0.1
Fireplace_Qu_No_Fireplace 4546.031514 0.1
Fireplace_Qu_Typical -1105.453354 0.1
Fireplace_Qu_other 1172.042634 0.1

16

Garage_Type_BuiltIn -5182.566720 0.1
Garage_Type_Detchd -1238.501946 0.1
Garage_Type_other -10324.464210 0.1
Garage_Finish_RFn -2806.603971 0.1
Garage_Finish_Unf -969.339686 0.1

Garage_Qual_Typical -2427.037740 0.1
Garage_Qual_other 1761.572629 0.1
Garage_Cond_other -9021.722065 0.1
Paved_Drive_Paved 3943.712969 0.1
Paved_Drive_other 6114.141994 0.1

Pool_QC_other 17880.143965 0.1
Fence_No_Fence -2711.857292 0.1
Fence_other -1542.616891 0.1
Misc_Feature_other 9460.842093 0.1
Sale_Type_WD -124.694469 0.1

Sale_Type_other -1217.105822 0.1
Sale_Condition_Normal 11499.733894 0.1
Sale_Condition_Partial 18556.312374 0.1
Sale_Condition_other 11574.716158 0.1

We can see in the LASSO model that many of the predictors were assigned coefficients of 0.
The LASSO procedure identified that those predictors weren’t worth “buying”, so it left them
out and only included the most useful predictors!

Summary

In this notebook, we introduced two new regression models: Ridge Regression and the LASSO.
These models are of the familiar form E [y] = β0 + β1x1 + β2x2 + · · · + βkxk, but are fit using a
constrained optimization procedure rather than ordinary least squares. When we implement
Ridge and the LASSO, we are reducing the likelihood that the resulting model is overfit. With
these models, however, we must remember that all numerical predictors need to be scaled and
no missing data can be present in the training data.

17

	Recap
	Motivation
	Objectives
	Ordinary Least Squares
	Ridge Regression
	Least Absolute Shrinkage and Selection Operator (LASSO)
	Some Feature PreProcessing Concerns
	Fitting a Model Using Ridge Regression or the LASSO
	Ummm…Great – So What Do I Use and When Do I Use It?

	Implementing Ridge Regression and the LASSO
	Implementing Ridge Regression
	Implementing the LASSO

	Summary

