
Cross-Validation and Reliable Performance
Estimation

August 3, 2024

Table of contents

Recap . 2
Motivation . 2
Objectives . 6
Cross-Validation . 6

Implementing Cross-Validation in {tidymodels} 7
Summary . 9

library(tidyverse)
library(tidymodels)
library(palmerpenguins)
library(patchwork)
library(kableExtra)

tidymodels_prefer()

penguins <- palmerpenguins::penguins

options(kable_styling_bootstrap_options = c("hover", "striped"))

theme_set(theme_bw(base_size = 14))

set.seed(123)
penguins_split <- initial_split(penguins)
penguins_train <- training(penguins_split)
penguins_test <- testing(penguins_split)

1

Recap

In the previous notebook, we saw that adding flexibility to a model improves its ability to
approximate complex relationships. Additional flexibility also increases the model’s ability to
fit the training data – that is, more flexible models will generally have lower training error
than less flexible models. Because training error continues to drop with additional flexibility,
we need an additional data source which was unseen by the model during the training process
in order to provide an unbiased estimate of future model performance. Ideally, this test error
will decrease until the optimal level of model flexibility is reached but then the test error will
increase once the model becomes overfit to the training data.

At the end of the last notebook, we drew an elbow plot, showing how the training and test
errors changed as model flexibility was increased. This visual technique allowed us to identify
which models were likely underfit and what the threshold for an overfit model was. We can
use these elbow plots in general, to identify an appropriate level of flexibility for our models.

Motivation

We’ve placed a lot of faith in our training and test sets over the last few weeks. We’ve given
the training data total power to determine our model coefficients and the test data sole power
to determine our expected performance metrics (R-Squared, RMSE, etc.). Perhaps we should
have some concern here – especially given our most recent discussion about model flexibility
and its relationship to variance. Different training data would result in differently estimated
coefficients and different testing data would result in differently estimated performance esti-
mates – do we really want to believe that our random data splitting resulted in perfectly fair
and representative training and test data? It is certainly possible that we, by chance, would
generate a particularly “easy” training set and a particularly “difficult” test set (or vice-versa).
Furthermore, if we are in the business of constructing models often, such an occurrence is
guaranteed eventually!

To highlight how much influence our training and test sets can have on our models and the
expectations we develop about them, each plot below corresponds to the RMSE for models of
degree 1, 2, 3, and 5 for a single data set but using a different training/testing splits. To produce
the plots below, I’ve generated a toy dataset and am constructing/analyzing the performance
of a variety of models (linear, quadratic, cubic, fifth-degree) for 10 different training/test set
combinations below. Interpret the elbow plots to see how the estimated performance metrics
change for each different training and test set.

set.seed(345)
num_points <- 100
x <- runif(num_points, 0, 50)
y <- (x - 20)*(x - 40) + rnorm(num_points, 0,150)
toy_data <- tibble(x = x, y = y)

2

#ggplot(toy_data) +
geom_point(aes(x = x, y = y)) +
labs(title = "Toy Data")
my_order <- c(1, 2, 3, 5)

collected_metrics_df <- tibble(.metric = NA,
.estimator = NA,
.estimate = NA,
flexibility = NA,
trial = NA,
type = NA)

for(i in 1:10){
toy_splits <- initial_split(toy_data)
toy_train <- training(toy_splits)
toy_test <- testing(toy_splits)

for(deg in my_order){
lr_spec <- linear_reg() %>%
set_engine("lm")

lr_rec <- recipe(y ~ x, data = toy_train) %>%
step_poly(x, degree = deg, options = list(raw = TRUE))

lr_wf <- workflow() %>%
add_model(lr_spec) %>%
add_recipe(lr_rec)

lr_fit <- lr_wf %>%
fit(toy_train)

pred_col_name <- paste0("degree_", deg, "_trial_", i)
toy_train <- lr_fit %>%
augment(toy_train) %>%
rename(!!pred_col_name := .pred)

toy_test <- lr_fit %>%
augment(toy_test) %>%
rename(!!pred_col_name := .pred)

my_metrics <- metric_set(rsq, rmse)
collected_metrics_df <- collected_metrics_df %>%
bind_rows(
(toy_train %>%

my_metrics(y, !!pred_col_name) %>%
mutate(flexibility = deg,

trial = i,
type = "training")

3

)
) %>%
bind_rows(
(toy_test %>%

my_metrics(y, !!pred_col_name) %>%
mutate(flexibility = deg,

trial = i,
type = "test")

)
)

}
}

collected_metrics_df %>%
filter(!is.na(.metric)) %>%
pivot_wider(id_cols = c(flexibility, trial, type),

names_from = .metric, values_from = .estimate) %>%
ggplot() +
geom_point(aes(x = flexibility, y = rmse, shape = type, color = type)) +
geom_line(aes(x = flexibility, y = rmse, color = type)) +
labs(x = "Flexibility (Degree)",

y = "RMSE",
color = "Error Type",
shape = "Error Type") +

facet_wrap(~trial)

4

9 10

5 6 7 8

1 2 3 4

1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5

150
200
250

150
200
250

150
200
250

Flexibility (Degree)

R
M

S
E Error Type

test

training

collected_metrics_df %>%
filter(!is.na(.metric),

flexibility == 2,
type == "test") %>%

pivot_wider(id_cols = c(flexibility, trial, type),
names_from = .metric, values_from = .estimate) %>%

kable() %>%
kable_styling()

flexibility trial type rsq rmse
2 1 test 0.6593570 114.7737
2 2 test 0.7253872 166.9643
2 3 test 0.6374607 160.0023
2 4 test 0.8284092 127.3285
2 5 test 0.4600495 161.7844
2 6 test 0.6501866 186.2976
2 7 test 0.8038373 124.2833
2 8 test 0.6308369 163.7026
2 9 test 0.8273417 128.1685
2 10 test 0.6708070 165.8269

The elbow plots pretty reliably identify the appropriate level of model flexibility. In the toy

5

data set I generated, the true association between 𝑥 and 𝑦 was quadratic. However, the test
RMSE, which we utilize in estimating the “accuracy” of our model’s predictions fluctuates
quite wildly – between a low of below 115 for the first training/test set combination, and a
high of nearly 190 for the sixth training/test combination. There is a big difference between
claiming our model’s predictions are accurate to within ±230 units and within ±380 units.
These discrepancies should be worrisome. We are putting lots of trust in our models, so
it would be nice to have more certainty about our estimated coefficients, predictions, and
error/performance estimates.

Objectives

The discussions above have highlighted that, while we thought we were doing the right things
with our training and test set approach all along, we were actually very vulnerable to the
random data that – by chance – fell into our training set and our test set. Different splits
can lead to different models and certainly different model performance expectations. In this
notebook, we’ll develop a robust framework which will help us obtain more reliable performance
estimates and help us estimate how uncertain we are in those estimates.

After working through this notebook you should be able to:

• Describe the pitfalls associated with the validation set approach we’ve been using up to
this point in our course.

• Describe how cross-validation works as well as how it mitigates the issues associated
with a single validation set.

• Implement cross-validation using vfold_cv() in conjunction with fit_resamples()
from {tidymodels} to fit and assess models using cross-validation.

• Observe and interpret individual performance metrics on each cross-validation fold as
well as to aggregate those metrics to a more stable performance estimate along with an
estimate for our uncertainty in this metric.

Cross-Validation

In cross-validation, rather thank breaking our data set into a single training and test set,
we’ll break our data into 𝑘 folds, were 𝑘 is somewhere between 3 and 𝑛 (your total number
of observations). Each of the folds will take one turn playing the role of the test set for a
model fit on all of the other folds – that is, with cross-validation, we’ll fit 𝑘 models and get 𝑘
performance estimates. Once we have those performance estimates, they can be averaged and
we can compute the standard error corresponding to the performance metric. This provides
us (i) more stable and reliable model performance estimates, and (ii) a way to quantify the
uncertainty associated with those metrics.

The most commonly utilized number of folds are 5 and 10. In the special case where you
utilize 𝑛 folds, each observation belongs to its own fold – this is often called Leave-One-Out

6

Cross-Validation – it is very computationally expensive. The greater the number of folds, the
more models need to be fit.

Implementing Cross-Validation in {tidymodels}

It’s been a bit since we worked with the palmerpenguins data, but let’s bring that data set
back. If you remember, we built several linear regression models using that data set. Our
most successful model was a model which included [DESCRIBE MODEL HERE] and which
had an estimated test RMSE of [INSERT TEST RMSE HERE]. For several of the models we
built with the penguins data, our test RMSE was actually lower than our training RMSE. In
this case, random splitting had obtained an easy test set for us. Knowing what we do now, we
should be skeptical of using that test RMSE number to estimate future model performance.
Cross-validation is a way to protect against just getting an “easy” or “difficult” test set by
chance.

We’ll update our workflow as follows:

1. Split data into training and validation sets using initial_split(), training(), and
testing() as usual, but with a larger proportion of data belonging to the “training” set.
We’ll use prop = 0.9 for the penguins data – this will leave about 34 penguins in our
holdout set.

• We’ll reserve this smaller test set as a final sanity check for our model before we
“push it to production”.

2. We’ll use vfold_cv() to split the training data into cross-validation folds.

3. We’ll build our model(s) as usual (create a model specification, build a recipe, package
the model and recipe into a workflow) and then use fit_resamples() rather than fit()
to fit and assess our model on our cross-validation folds.

4. Once we’ve fit our models on the folds (the resamples), we’ll collect the performance
metrics on them using collect_metrics().

We’ll take care of the first three steps below.

penguins_split <- initial_split(penguins, prop = 0.9)
penguins_train <- training(penguins_split)
penguins_test <- testing(penguins_split)

penguins_folds <- vfold_cv(penguins_train)

lr_spec <- linear_reg() %>%
set_engine("lm")

7

lr_rec <- recipe(body_mass_g ~ ., data = penguins_train) %>%
step_dummy(species) %>%
step_dummy(island) %>%
step_interact(~ starts_with("species"):contains("length")) %>%
step_interact(~ bill_length_mm:bill_depth_mm)

lr_wf <- workflow() %>%
add_model(lr_spec) %>%
add_recipe(lr_rec)

lr_results <- lr_wf %>%
fit_resamples(penguins_folds)

Now that we’ve fit our model, we can extract the results from Cross-Validation. There are
two types of result we can get back – individual results from each fold:

lr_results %>%
collect_metrics(summarize = FALSE) %>%
pivot_wider(id_cols = id, names_from = .metric, values_from = .estimate) %>%
kable() %>%
kable_styling()

id rmse rsq
Fold01 362.4834 0.7540292
Fold02 274.2758 0.8794673
Fold03 302.1292 0.7981302
Fold04 334.4922 0.7574754
Fold05 242.2274 0.9157606
Fold06 261.8536 0.9053921
Fold07 312.0557 0.9015039
Fold08 296.0174 0.8761237
Fold09 241.9070 0.9119503
Fold10 248.9867 0.9231618

or a single set of metrics summarized across all of the folds:

lr_results %>%
collect_metrics() %>%
kable() %>%
kable_styling()

8

.metric .estimator mean n std_err .config
rmse standard 287.6428273 10 12.980473 Preprocessor1_Model1
rsq standard 0.8622995 10 0.021012 Preprocessor1_Model1

Seeing the results on the individual folds gives us an idea about how our performance metrics
fluctuate from one set to the next. Are the performance metrics relatively stable or do they
vary wildly from one fold to the next? Seeing the aggregated results gives us a more trustworthy
estimate for each of our performance metrics and also reports a standard error for each metric.
That standard error measures the average fluctuation in the performance estimate from one
fold to the next.

In summary, we can be confident that the R-Squared value for this model is around 86.2%±4%.
Similarly, we can be confident that the predictions our model makes will be accurate to within
about ±2 (287.64 ± 2 ⋅ 12.98) grams. Check with the other students in the class – we should
all have similar estimates for the Cross-Validation RMSE, even when we don’t set the same
seed. This was not the case when we used the validation-set approach.

Summary

In this notebook we saw that different test sets result in different model performance estimates.
In fact, those model performance estimates can vary quite wildly from one choice of test set
to another. For this reason, we’ve developed the notion of cross-validation, a powerful tool
for producing stable and more reliable performance estimates than what we get from the
validation-set approach alone.

In cross-validation, our training data is split into several folds. Each fold takes one turn being
left out of model training and serves as the validation set for a model fit on the remaining
folds. In doing this, we obtain several model performance estimates which can be averaged to
obtain a more stable performance estimate along with an estimate for the standard error of
that performance estimate.

• To split our training data into cross-validation folds, we use vfold_cv() on the training
set.

• To assess our model using cross-validation we use fit_resamples() in place of the fit()
function we have been using up to this point.

• We obtain and aggregate the cross-validation performance metrics by calling
collect_metrics() on our “fitted” model.

Cross-validation is a very powerful tool and we’ll continue to use it in a variety of ways
throughout the remainder of our course.

9

	Recap
	Motivation
	Objectives
	Cross-Validation
	Implementing Cross-Validation in {tidymodels}

	Summary

