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Where We Stand

In the last notebook, we saw how to model curvi-linear relationships. We added curvature to
our models by feature engineering with step_poly() as a component of a recipe(). In that
notebook, we saw that introducing curvature can improve model performance and can help us
model more complex relationships, but results in models which are more difficult to interpret.

In this notebook, we’ll consider another way that we can potentially improve model performance.
That is, by allowing predictors to interact with one another. Interactions allow for the
relationship between two variables (a predictor and a response) to depend on the value of a
third variable (another predictor). The impact of an interaction term on a model depends on
the types of variables which are interacting – we’ll explore the possibilities in this notebook.
Similar to models including polynomial terms, we’ll sometimes observed improved fit when
using models with interaction terms, but those resulting models become more difficult to
interpret.

Objectives

• Use exploratory data analysis to identify visual evidence for interaction between predictors.
• Use step_interact() to create additional model terms corresponding to the interaction

(product) between two or more predictors.
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• Fit, assess, reduce, interpret, and utilize models including interactions terms.

Models Including Interaction (step_interact())

We can use interaction terms when we expect that the association between our response and
one predictor depends on the value of a second predictor. There are three types of interactions
between two variables:

• Interactions between two categorical predictors result in a shift of intercept, associated
with combinations of categories. This is very similar to what happened when we first
introduced categorical predictors – there we got a different intercept for each level of the
categorical predictor. Now, we’ll get an adjustment to the intercept for each combination
of levels of the corresponding predictors.

– For example, if we allow species and year to interact in a model to predict penguin
body_mass_g, we’ll have potentially unique intercepts for each species and observed
year combination.

• Interactions between a categorical predictor and a numerical predictor allow for different
slopes/curvatures in the association between the response and corresponding predictor
across different levels of the categorical variable.

– For example, if we allow species and bill_depth_mm to interact in a model to pre-
dict penguin body_mass_g, we’ll allow for the association between bill_depth_mm
and body_mass_g to be different across the three species of penguin.

• Interactions between two numerical variables allow for the association between the
response (y) and a predictor (x1) to depend on the value of a second predictor (x2).

– There is not necessarily a nice slope or intercept interpretation here, however,
interactions between pairs of numerical predictors can introduce curvature to your
regression model. Simply put, if a model includes an interaction term βx1x2, in
order to know the expected impact of a unit increase of x1 on the response variable
(y), we must decide which level of the variable x2 we are interested in first.

– As an example, if we allow bill_depth_mm to interact with bill_length_mm in
a model predicting penguin body_mass_g, then we are saying that the expected
impact of a unit increase in bill_length_mm on body_mass_g will be different for
penguins having different bill_depth_mm values.
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Interactions in Action!

Let’s see these different types of interactions in action with the penguins data. We’ll look at
the three scenarios above one-by-one and then we’ll try pulling everything together.

Interactions Between Two Categorical Variables

Let’s say that we propose a model which predicts penguin body_mass_g using flipper_length_mm,
species, year, and an interaction between species and year. Such a model is of the following
form:

E [body_mass_g] =β0 + β1 · flipper_length_mm+
β2 · Chinstrap + β3 · Gentoo+
β4 · year_08 + β5 · year_09+
β6 · (Chinstrap) (year_08) +
β7 · (Chinstrap) (year_09) +
β8 · (Gentoo) (year_08) +
β9 · (Gentoo) (year_09)

There’s lots of coefficients in this model! Let’s fit it and see what we actually end up with. In
order to fit this model, we’ll need to include some feature engineering step_*()s. First, we’ll
need to obtain dummy variables for the levels of the species and island predictors – we’ll use
step_dummy() for that. Then, we’ll want to allow those dummy variables to interact – we’ll
use step_interact(), with a few tricks.

• step_interact() requires the use of a tilde (~) prior to defining the terms that should
interact with one another.

• We’ll denote terms that should interact with one another via the colon (:).
• We replaced species and island with corresponding dummy variables when we used

step_dummy(), so those columns will not be available in the transformed data being
passed to step_interact(). Instead, we’ll have a series of columns like species_X,
species_Y, . . . , and island_A, island_B,. . . – rather than defining all of these
individual interactions, we’ll use the starts_with() selector function to obtain the
groups of columns we want interacting with one another.

mass_cat_inter_spec <- linear_reg() %>%
set_engine("lm")

mass_cat_inter_rec <- recipe(body_mass_g ~ flipper_length_mm + species + year, data = penguins_train) %>%
step_dummy(species) %>%
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step_mutate(year = as.factor(year)) %>%
step_dummy(year) %>%
step_interact(~ starts_with("species"):starts_with("year"))

mass_cat_wf <- workflow() %>%
add_model(mass_cat_inter_spec) %>%
add_recipe(mass_cat_inter_rec)

mass_cat_fit <- mass_cat_wf %>%
fit(penguins_train)

mass_cat_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.80644 0.7993586 367.5427 113.8804 0 9 -1870.299 3762.598 3801.595 33231550 246 256

mass_cat_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept -4933.59608 691.592270 -7.1336773 0.0000000
flipper_length_mm 46.42457 3.704239 12.5328209 0.0000000
species_Chinstrap -315.26370 104.431973 -3.0188427 0.0028044
species_Gentoo 35.38641 144.099729 0.2455689 0.8062207
year_X2008 -186.53149 84.902008 -2.1970209 0.0289520

year_X2009 -330.22761 88.313278 -3.7392747 0.0002296
species_Chinstrap_x_year_X2008 54.03892 158.852806 0.3401823 0.7340095
species_Chinstrap_x_year_X2009 104.68961 146.791942 0.7131836 0.4764081
species_Gentoo_x_year_X2008 -41.65877 126.758321 -0.3286472 0.7427019
species_Gentoo_x_year_X2009 267.92841 129.193714 2.0738502 0.0391339

There are some interesting things happening here. Several of our model terms have large
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p.values, indicating that they may not be significant predictors of penguin body_mass_g.
However, if we look more closely, some of the terms are significant.

• The species_Gentoo term is not significantly different from the base level
(species_Adelie), but the species_Chinstrap term is significantly different
from the base level.

• Both year categories are significantly different from the base year (year_2007).
• The interaction between species and year is significant for Gentoo penguins in the year

2009, but not for any of the other combinations of species and year.

If all levels of a categorical predictor (or interaction) show insignificant p.values, then we
would drop that predictor (or the corresponding interaction) from the model. Since some of
the terms resulting from the categorical predictor (or interaction) are statistically significant,
then we’ll keep all of the corresponding model terms.

• (⋆) There are some other things we could do here – we can address some of them, as well
as their benefits and drawbacks, in class.

Okay, let’s look at the model. The model including estimated β-coefficients is:

E [body_mass_g] = − 4933.6 + 46.42 · flipper_length_mm+
(−315.26) · Chinstrap + 35.39 · Gentoo+
(−186.53) · year_08 + (−330.23) · year_09+
54.04 · (Chinstrap) (year_08) +
104.69 · (Chinstrap) (year_09) +
(−41.66) · (Gentoo) (year_08) +

267.93 · (Gentoo) (year_09)

From this, we can make interpretations as follows:

• On average, controlling for species and observation year, a unit increase in penguin
flipper_length_mm is associated with a penguin body_mass_g increase of about 46.42
grams.

• Controlling for flipper_length_mm, Chinstrap penguins are about 315.26 grams less
massive than Adelies, on average. The data used to fit the model doesn’t seem to suggest
significant changes in Chinstrap mass year over year.

• Controlling for flipper_length_mm, the data used to fit the model doesn’t seem to
suggest that Gentoo penguins have significantly different body_mass_g than Adelie
penguins. However, there does seem to be a change in the year 2009 – Gentoos observed
during that year seem to be much more massive than Adelies in that year (by about
267.92 − (−330.23) ≈ 590 grams).
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• Controlling for flipper_length_mm, Adelie penguins seem to have less mass year-over-
year. Approximately 186.5 grams lower than their average 2007 body_mass_g in 2008
and approximately 330.23 grams lower than their average 2007 body_mass_g in 2009.

Now, let’s look at our model graphically!

new_data <- crossing(flipper_length_mm = seq(min(penguins_train$flipper_length_mm,
na.rm = TRUE),

max(penguins_train$flipper_length_mm,
na.rm = TRUE),

by = 1),
species = c("Adelie", "Chinstrap", "Gentoo"),
year = c(2007, 2008, 2009)

)

new_data <- mass_cat_fit %>%
augment(new_data)

p1 <- ggplot() +
geom_point(data = penguins_train,

aes(x = flipper_length_mm,
y = body_mass_g,
color = species,
shape = as.factor(year)),

alpha = 0.5) +
geom_line(data = new_data,

aes(x = flipper_length_mm,
y = .pred,
color = species,
linetype = as.factor(year))) +

labs(x = "Flipper Length (mm)",
y = "Body Mass (g)",
linetype = "Year",
shape = "Year")

p2 <- ggplot() +
geom_point(data = penguins_train,

aes(x = flipper_length_mm,
y = body_mass_g,
color = species),

alpha = 0.5,
show.legend = FALSE) +

geom_line(data = new_data,
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aes(x = flipper_length_mm,
y = .pred,
color = species),

show.legend = FALSE) +
facet_grid(species ~ year) +
labs(x = "Flipper Length (mm)",

y = "Body Mass (g)")

(p1 / p2)

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
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The single plot above which shows the model with all of the varied intercepts may be difficult
to read, but it is clear that the slope of each line is the same. That is, the estimated association
between flipper_length_mm and body_mass_g is constant across each of the combinations of
species/year category. The intercepts are all that were varied! The plot on the right is much
more readable, but the impact of the categorical variables and the corresponding interactions
is less obvious from that plot.
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Interaction Between a Categorical and Numerical Predictor

Let’s say that we propose a model which predicts penguin body_mass_g using flipper_length_mm,
species, and an interaction between species and flipper_length_mm. Such a model is of
the following form:

E [body_mass_g] =β0 + β1 · flipper_length_mm + β2 · Chinstrap + β3 · Gentoo+
β4 · (flipper_length_mm) (Chinstrap) + β5 · (flipper_length_mm) (Gentoo)

We’ll build this model similar to the previous one. We’ll use step_dummy() to convert species
to corresponding dummy variables and then we’ll use step_interact() to obtain interactions
between each level of the species variable and the flipper_length_mm.

mass_catnum_spec <- linear_reg() %>%
set_engine("lm")

mass_catnum_rec <- recipe(body_mass_g ~ flipper_length_mm + species, data = penguins_train) %>%
step_dummy(species) %>%
step_interact(~ starts_with("species"):flipper_length_mm)

mass_catnum_wf <- workflow() %>%
add_model(mass_catnum_spec) %>%
add_recipe(mass_catnum_rec)

mass_catnum_fit <- mass_catnum_wf %>%
fit(penguins_train)

mass_catnum_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.7952182 0.7911226 375.0103 194.1623 0 5 -1877.513 3769.025 3793.842 35158182 250 256

mass_catnum_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()
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term estimate std.error statistic p.value

Intercept -2797.759952 1059.375697 -2.6409516 0.0087881
flipper_length_mm 34.282823 5.582906 6.1406767 0.0000000
species_Chinstrap -129.708846 1708.747729 -0.0759087 0.9395524
species_Gentoo -4216.630301 1702.555778 -2.4766474 0.0139247
species_Chinstrap_x_flipper_length_mm -0.366684 8.853089 -0.0414188 0.9669951

species_Gentoo_x_flipper_length_mm 21.389349 8.284884 2.5817319 0.0104008

We’ve obtained our estimated model,

E [body_mass_g] ≈ − 2797.76 + 34.38 · flipper_length_mm + (−129.71) · Chinstrap + (−4216.6) · Gentoo+
(−0.37) · (flipper_length_mm) (Chinstrap) + 21.39 · (flipper_length_mm) (Gentoo)

Notice that this model allows for different slopes and intercepts for each species. For example:

Adelie : E [body_mass_g] ≈ −2797.76 + 34.28 · flipper_length_mm
Chinstrap : E [body_mass_g] ≈ (−2797.76 − 129.71) + (34.28 − 0.37) · flipper_length_mm
Gentoo : E [body_mass_g] ≈ (−2797.76 − 4216.63) + (34.28 + 21.39) · flipper_length_mm

From the three models above, we can make our usual interpretations. Let’s see those models
graphically.

new_data <- crossing(flipper_length_mm = seq(min(penguins_train$flipper_length_mm,
na.rm = TRUE),

max(penguins_train$flipper_length_mm,
na.rm = TRUE),

by = 1),
species = c("Adelie", "Chinstrap", "Gentoo")
)

new_data <- mass_catnum_fit %>%
augment(new_data)

p1 <- ggplot() +
geom_point(data = penguins_train,

aes(x = flipper_length_mm,
y = body_mass_g,
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color = species),
alpha = 0.5) +

geom_line(data = new_data,
aes(x = flipper_length_mm,

y = .pred,
color = species)) +

labs(x = "Flipper Length (mm)",
y = "Body Mass (g)")

p2 <- ggplot() +
geom_point(data = penguins_train,

aes(x = flipper_length_mm,
y = body_mass_g,
color = species),

alpha = 0.5,
show.legend = FALSE) +

geom_line(data = new_data,
aes(x = flipper_length_mm,

y = .pred,
color = species),

show.legend = FALSE) +
facet_wrap(~ species) +
labs(x = "Flipper Length (mm)",

y = "Body Mass (g)")

(p1 / p2)

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
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The visual shows what we see numerically in the model summary output – the data do not
provide convincing evidence that the association between body mass and flipper length is
different (in either intercept or slope) between Adelie and Chinstrap penguins. The data do
suggest, however, that both the slope and intercept in this model is different between Adelie
and Gentoo penguins.

Interaction Between Two Numerical Predictors

Let’s say that we propose a model which predicts penguin body_mass_g using flipper_length_mm,
bill_length_mm, and an interaction between these two predictors. Such a model is of the
following form:

E [body_mass_g] = β0+β1·flipper_length_mm+β2·bill_length_mm+β3·(flipper_length_mm) (bill_length_mm)

We’ll build this model similar to the previous one. Since both of our variables are numerical,
we no longer need step_dummy() and we’ll go straight to step_interact().

mass_num_spec <- linear_reg() %>%
set_engine("lm")

mass_num_rec <- recipe(body_mass_g ~ flipper_length_mm + bill_length_mm, data = penguins_train) %>%
step_interact(~ flipper_length_mm:bill_length_mm)
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mass_num_wf <- workflow() %>%
add_model(mass_num_spec) %>%
add_recipe(mass_num_rec)

mass_num_fit <- mass_num_wf %>%
fit(penguins_train)

mass_num_fit %>%
glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.7755339 0.7728617 391.0593 290.2213 0 3 -1889.26 3788.521 3806.247 38537702 252 256

mass_num_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 5701.959158 3379.8251437 1.6870574 0.0928297
flipper_length_mm -10.287765 17.4109650 -0.5908785 0.5551314
bill_length_mm -242.479461 72.9847879 -3.3223288 0.0010251
flipper_length_mm_x_bill_length_mm 1.264581 0.3718553 3.4007338 0.0007813

We’ve obtained our estimated model and the interaction between flipper_length_mm and
bill_length_mm is statistically significant. The estimated mode is

E [body_mass_g] ≈ 5701.96+(−10.29)·flipper_length_mm+(−242.48)·bill_length_mm+1.26·(flipper_length_mm) (bill_length_mm)

Notice that this model allows for the expected increase in body mass due to an increased flipper
length to depend on the bill length. Similarly, the expected increase in body mass due to an
increased bill length depends on the flipper length in this model.

It will be easiest to understand this phenomenon by calculating a few values or by plotting our
models using various assumed levels for our predictors.
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new_data_flipper <- crossing(flipper_length_mm = seq(min(penguins_train$flipper_length_mm,
na.rm = TRUE),

max(penguins_train$flipper_length_mm,
na.rm = TRUE),

by = 1),
bill_length_mm = c(35, 40, 45, 50)
)

new_data_bill <- crossing(bill_length_mm = seq(min(penguins_train$bill_length_mm,
na.rm = TRUE),

max(penguins_train$bill_length_mm,
na.rm = TRUE),

length.out = 100),
flipper_length_mm = c(175, 190, 200, 210, 220)
)

new_data_flipper <- mass_num_fit %>%
augment(new_data_flipper)

new_data_bill <- mass_num_fit %>%
augment(new_data_bill)

p1 <- ggplot() +
geom_point(data = penguins_train,

aes(x = flipper_length_mm,
y = body_mass_g),

alpha = 0.5) +
geom_line(data = new_data_flipper,

aes(x = flipper_length_mm,
y = .pred,
color = as.factor(bill_length_mm))) +

labs(x = "Flipper Length (mm)",
y = "Body Mass (g)",
color = "Bill Length (mm)")

p2 <- ggplot() +
geom_point(data = penguins_train,

aes(x = bill_length_mm,
y = body_mass_g),

alpha = 0.5,
show.legend = FALSE) +

geom_line(data = new_data_bill,
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aes(x = bill_length_mm,
y = .pred,
color = as.factor(flipper_length_mm))) +

labs(x = "Flipper Length (mm)",
y = "Body Mass (g)",
color = "Flipper Length (mm)")

(p1 / p2)

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
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In each case, we can see that the slope of the modeled association between penguin body mass
and the plotted predictor depends on the level (value) of the third variable.

Your Task

1. Use what you’ve learned to build a model to predict penguin body_mass_g using
bill_depth_mm.
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2. Update your model to include a main effects term for species.
3. Update your model with an additional term allowing for interaction between species

and bill_depth_mm.
4. Interpret what you just discovered!
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