
Using Higher-Order Terms: Curvi-Linear
(Polynomial) Terms

August 3, 2024

Table of contents

Where We Stand . 1
Objectives . 3
A New Data Set: Boston Housing . 3
Motivating Interaction and Higher-Order Terms . 4
New Terminology . 6
Starting with a Main-Effects Model . 7
Building a Model Including Curvature (step_poly()) 8

Interpreting a Model with Curvature . 13
Assessing Model Performance . 17

Summary . 18

Where We Stand

We’ve come a long way over the past few weeks. We’ve followed the trajectory below.

• Simple Linear Regression Models: E [y] = β0 + β1 · x1

– General Assumption: We can predict the response, y, using knowledge of another
variable, x1. The relationship between y and x1 is a straight line relationship, with
random noise (irreducible error).

– Model Form: A simple linear regression model is a straight line.

• Multiple Linear Regression Models: E [y] = β0 + β1x1 + β2x2 + · · · + βkxk

– General Assumption: We can predict the response, y, using knowledge of other
variables, x1, x2, · · · , xk.

1

∗ For any of the xi which are numerical, the association between y and xi is a
straight line relationship, with slope (βi) independent of all other predictors xj .

∗ For any of the xi which are dummy variables corresponding to a categorical
predictor, the impact of including xi in the model is a vertical shift. That is, a
change in intercept specific to that particular level of the categorical variable.

∗ All other fluctuation in y is random noise (irreducible error).

– Model Form: A multiple linear regression model with no categorical predictors is a
flat hyperplane, while a multiple linear regression model with categorical predictors
is a set of parallel, flat hyperplanes.

We can see these model forms below. For ease of visualization, we’ll use a simple linear
regression model to predict penguin body_mass_g using bill_length_mm on the left. In the
plot on the right, we’ll extend that model by introducing dummy variables corresponding
to the species variable. Note that a hyperplane in two dimensions (bill_length_mm and
body_mass_g) is a straight line.

3000

4000

5000

6000

40 50 60

Bill Length (mm)

B
od

y
M

as
s

(g
)

Predicting Body Mass

2000

3000

4000

5000

6000

40 50 60

Bill Length (mm)

B
od

y
M

as
s

(g
)

Predicting Body Mass

We can see that our models in both cases are straight lines, and that the models are parallel
lines in the case where we included the species variable. We’ll move beyond these restrictions
in this notebook and the next one too.

• In this notebook, we’ll discuss methods for adding curvature to our models. This is
sometimes called curvi-linear regression.

• In our next notebook, we’ll discuss methods for allowing interaction between terms.
Among other things, interaction terms will allow for non-parallel hyperplanes (different
rates of change / slopes for different categories).

2

Objectives

In previous notebooks we learned how to build, assess, and interpret simple and multiple linear
regression models, including those with categorical predictors. Those models all made the
following assumptions:

• The association between the response and any individual predictor is linear.
• All predictor variables act independently in influencing/predicting the response.
• The association between any numerical predictor and the response (the slope of the model)

is the same, regardless of the class/category

What happens if these assumptions aren’t reasonable (or we want to explore whether relaxing
these assumptions improves fit)? In this notebook, we’ll see how to update our models to
allow for curved relationships and predictors which do not act independently to influence our
response variable. After reviewing this notebook, you should be able to:

• Use exploratory data analysis to identify visual evidence for curved relationships and
interaction between predictors.

• Use step_*() functions to augment a recipe(), updating how predictor variables are
utilized in a regression model.

– These step_*() functions are feature engineering steps, which transform our under-
lying data set.

• Use step_poly() to allow for polynomial terms in a model – that is, terms whose
corresponding predictor variable is raised to a positive integer power.

• Fit, assess, reduce, interpret, and utilize models including polynomial terms.

A New Data Set: Boston Housing

There’s not much visual evidence to suggest curved relationships between the physiological
features and penguin body mass in the palmerpenguins data set. Because of this, we’ll
temporarily shift to a new data set on median property values in Boston from the 1970’s.

boston <- read_csv("https://raw.githubusercontent.com/selva86/datasets/master/BostonHousing.csv")

3

Rows: 506 Columns: 14
-- Column specification --
Delimiter: ","
dbl (14): crim, zn, indus, chas, nox, rm, age, dis, rad, tax, ptratio, b, ls...

i Use `spec()` to retrieve the full column specification for this data.
i Specify the column types or set `show_col_types = FALSE` to quiet this message.

boston %>%
head() %>%
kable() %>%
kable_styling()

crim zn indus chas nox rm age dis rad tax ptratio b lstat medv

0.00632 18 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
0.02731 0 7.07 0 0.469 6.421 78.9 4.9671 2 242 17.8 396.90 9.14 21.6
0.02729 0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.03237 0 2.18 0 0.458 6.998 45.8 6.0622 3 222 18.7 394.63 2.94 33.4
0.06905 0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2

0.02985 0 2.18 0 0.458 6.430 58.7 6.0622 3 222 18.7 394.12 5.21 28.7

This Boston housing dataset is quite famous (and problematic), and includes features on each
neighborhood and the corresponding median home value in that neighborhood. You can see
a data dictionary here. The data set has many interesting features and even allows us some
ability to explore structural racism in property valuation in 1970s Boston.

We’ll assume that medv, the median home value in thousands of dollars, is our response variable
and we’ll focus on the age, lstat, and chas predictors.

Motivating Interaction and Higher-Order Terms

Let’s take a look at the relationships between some of the available predictors in the boston
data set and the median home values (medv). As usual, we’ll split off the training and test sets
so that the test data remains hidden from ourselves and the model.

boston_split <- initial_split(boston)
boston_train <- training(boston_split)
boston_test <- testing(boston_split)

boston_test %>%

4

https://fairlearn.org/main/user_guide/datasets/boston_housing_data.html
https://www.kaggle.com/code/prasadperera/the-boston-housing-dataset

head() %>%
kable() %>%
kable_styling()

crim zn indus chas nox rm age dis rad tax ptratio b lstat medv

0.00632 18.0 2.31 0 0.538 6.575 65.2 4.0900 1 296 15.3 396.90 4.98 24.0
0.02729 0.0 7.07 0 0.469 7.185 61.1 4.9671 2 242 17.8 392.83 4.03 34.7
0.06905 0.0 2.18 0 0.458 7.147 54.2 6.0622 3 222 18.7 396.90 5.33 36.2
0.21124 12.5 7.87 0 0.524 5.631 100.0 6.0821 5 311 15.2 386.63 29.93 16.5
0.09378 12.5 7.87 0 0.524 5.889 39.0 5.4509 5 311 15.2 390.50 15.71 21.7

0.85204 0.0 8.14 0 0.538 5.965 89.2 4.0123 4 307 21.0 392.53 13.83 19.6

Now let’s do some visualization.

p1 <- boston_train %>%
ggplot() +
geom_hex(aes(x = lstat, y = medv)) +
labs(x = "Proportion Residents with Low Socioeconomic Status",

y = "Median Home Values (000s)")

p2 <- boston_train %>%
ggplot() +
geom_point(aes(x = age, y = medv),

alpha = 0.5) +
labs(x = "Proportion of Homes Built Before 1940",

y = "Median Home Values (000s)")

p3 <- boston_train %>%
mutate(chas = ifelse(chas == 1, "on", "off")) %>%
ggplot() +
geom_boxplot(aes(x = chas, y = medv)) +
labs(x = "On the Charles River",

y = "Median Home Values (000s)") +
coord_flip()

(p1 + p2) / p3

5

10
20
30
40
50

0 10 20 30

Proportion Residents with Low Socioeconomic Status

M
ed

ia
n

H
om

e
V

al
ue

s
(0

00
s)

count

2

4

6

8

10
20
30
40
50

25 50 75 100

Proportion of Homes Built Before 1940

M
ed

ia
n

H
om

e
V

al
ue

s
(0

00
s)

off

on

10 20 30 40 50

Median Home Values (000s)O
n

th
e

C
ha

rle
s

R
iv

er

From the plots above, we see that the association between the proportion of residents having low
socioeconomic status (lstat) and the median home values (medv) have a nonlinear association.
Additionally, it may be reasonable to suspect that the “slope” of the model with respect to
age (the proportion of homes built prior to 1940) is different for neighborhoods on the Charles
River versus those which are away from the river. We’ll explore all of these things, and more,
in the coming sections of this notebook.

New Terminology

Before we start building models, its worth developing some helpful terminology. Consider the
model below:

E [medv] =β0 + β1 · (age) + β2 · (lstat) + β3 · (chas) + β4 ·
(
age2

)
+

β5 · (chas · age) + β6 ·
(
chas · age2

)
+ β7 · (chas · lstat) + β8 · (age · lstat) + β9 ·

(
age2 · lstat

)
• The order of a model is the highest degree of any term in the model. Only numeric

predictors contribute to the degree of a term.

– The order of the proposed model above is third order, because of the age2 · lstat
term.

6

• Models including interaction terms include main effects and mixed effects terms.
The main effects terms contain a single predictor, while the mixed effects terms contain
multiple predictors.

E [medv] =

Main Effects︷ ︸︸ ︷
β0 + β1 · (age) + β2 · (lstat) + β3 · (chas) + β4 ·

(
age2

)
+

β5 · (chas · age) + β6 ·
(
chas · age2

)
+ β7 · (chas · lstat) + β8 · (age · lstat) + β9 ·

(
age2 · lstat

)
︸ ︷︷ ︸

Mixed Effects

These mixed effects are interaction terms in our model, so we’ll wait until the next notebook to
work with them.

Starting with a Main-Effects Model

Let’s start out with a basic model which uses age, lstat, and chas as straight-line predictors
of median home values.

main_reg_spec <- linear_reg() %>%
set_engine("lm")

main_reg_rec <- recipe(medv ~ age + lstat + chas, data = boston_train)

main_reg_wf <- workflow() %>%
add_model(main_reg_spec) %>%
add_recipe(main_reg_rec)

main_reg_fit <- main_reg_wf %>%
fit(boston_train)

main_reg_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 32.7516586 0.8274053 39.583573 0.0000000
age 0.0334359 0.0141179 2.368330 0.0183749

7

lstat -1.0266175 0.0552625 -18.577111 0.0000000
chas 4.7064996 1.2068696 3.899758 0.0001141

Let’s compute our performance metrics for our main effects model so that we have a benchmark
to try improving from.

my_metrics <- metric_set(rsq, rmse)

(main_reg_fit %>%
augment(boston_train) %>%
my_metrics(medv, .pred) %>%
mutate(type = "train")
) %>%

bind_rows(
main_reg_fit %>%

augment(boston_test) %>%
my_metrics(medv, .pred) %>%
mutate(type = "test")

) %>%
pivot_wider(id_cols = .metric,

names_from = type,
values_from = .estimate) %>%

kable() %>%
kable_styling()

.metric train test

rsq 0.5822417 0.5235821
rmse 5.9161187 6.4395620

Okay, now that we’ve got those benchmark metrics, let’s see if we can improve on them by
using higher-order terms.

Building a Model Including Curvature (step_poly())

In order to build a model including curvature, we’ll need to include some polynomial terms.
These are simply terms which include a predictor raised to an integer power greater than 1.
We can do this by adding a feature engineering step to our recipe(), just like we did with
step_dummy(). In order to add these higher-order terms that introduce curvature, we’ll use
step_poly(). Let’s see it in action! We’ll include second-order terms associated with age and

8

lstat, but not for the chas variable. This is because chas is a dummy variable, which can only
take the values 0 or 1 – what happens when you square these values? Including polynomial
terms with dummy variables doesn’t actually do anything!

Before we build our model, there are just a few comments about step_poly() that we should
highlight.

• If you’d like to build polynomial terms associated with multiple variables, you can do this
all at once by including each of the variables as the first few arguments to step_poly(),
separating the variables by commas.

• Set the degree of the polynomial terms (the amount of wiggling you’d like to allow) with
the degree argument.

– The default degree for step_poly() is degree 2, allowing a single bend in the
association between your predictor(s) and the response. You can override this
default by setting degree = 6, for example. This would allow up to five bends in
the association.

• Maintain your ability to interpret the relationship between predictor and response by
setting options = list(raw = TRUE)

– There is some linear algebra that can be done to try and reduce the correlation
between our polynomial terms and their corresponding lower-order terms. You
can think of this as squeezing all of the predictive juice out of the predictor. The
step_poly() function does this by default, but results in a model which is more
difficult to interpret. I recommend overriding this any time you intend to interpret
your models. You can do this by setting options = list(raw = TRUE) within
step_poly().

poly_reg_spec <- linear_reg() %>%
set_engine("lm")

poly_reg_rec <- recipe(medv ~ age + lstat + chas, data = boston_train) %>%
step_poly(age, degree = 2, options = list(raw = TRUE)) %>%
step_poly(lstat, degree = 2, options = list(raw = TRUE))

poly_reg_wf <- workflow() %>%
add_model(poly_reg_spec) %>%
add_recipe(poly_reg_rec)

poly_reg_fit <- poly_reg_wf %>%
fit(boston_train)

poly_reg_fit %>%

9

glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.7016358 0.6976363 5.039795 175.43 0 5 -1147.735 2309.47 2337.033 9474.027 373 379

poly_reg_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 40.3417328 1.4595604 27.6396465 0.0000000
chas 4.0258219 1.0242060 3.9306758 0.0001010
age_poly_1 0.0888854 0.0529147 1.6797863 0.0938362
age_poly_2 -0.0001052 0.0004307 -0.2443064 0.8071279
lstat_poly_1 -2.6872212 0.1444779 -18.5995316 0.0000000

lstat_poly_2 0.0484748 0.0040289 12.0316939 0.0000000

Note that the term for age_poly_2 is not statistically significant. We’ll drop it from the model
and re-run the regression.

poly_reg_spec <- linear_reg() %>%
set_engine("lm")

poly_reg_rec <- recipe(medv ~ age + lstat + chas, data = boston_train) %>%
step_poly(lstat, degree = 2, options = list(raw = TRUE))

poly_reg_wf <- workflow() %>%
add_model(poly_reg_spec) %>%
add_recipe(poly_reg_rec)

poly_reg_fit <- poly_reg_wf %>%
fit(boston_train)

poly_reg_fit %>%

10

glance() %>%
kable() %>%
kable_styling()

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.7015881 0.6983965 5.033456 219.8253 0 4 -1147.766 2307.531 2331.156 9475.543 374 379

poly_reg_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 40.6120902 0.9504752 42.728194 0.00e+00
age 0.0763219 0.0124520 6.129314 0.00e+00
chas 4.0279077 1.0228822 3.937802 9.81e-05
lstat_poly_1 -2.6830521 0.1432861 -18.725144 0.00e+00
lstat_poly_2 0.0482845 0.0039480 12.230164 0.00e+00

There; now all of our model terms are statistically significant. Let’s see what that model looks
like!

poly_reg_fit %>%
augment(boston_train) %>%
ggplot() +
geom_point(aes(x = lstat, y = medv),

alpha = 0.5) +
geom_point(aes(x = lstat, y = .pred),

color = "red",
alpha = 0.4) +

labs(x = "Proportion of Residents with Low Socioeconomic Status",
y = "Median Neighborhood Home Value (000s)",
title = "Median Home Values and Socioeconomic Status",
subtitle = "Actuals in Black, Predicted Values in Red")

11

10

20

30

40

50

0 10 20 30

Proportion of Residents with Low Socioeconomic Status

M
ed

ia
n

N
ei

gh
bo

rh
oo

d
H

om
e

V
al

ue
 (

00
0s

)
Actuals in Black, Predicted Values in Red

Median Home Values and Socioeconomic Status

We can also look at our model for a few age thresholds.

new_data <- crossing(age = c(10, 25, 50),
chas = c(0, 1),
lstat = seq(min(boston_train$lstat, na.rm = TRUE),

max(boston_train$lstat, na.rm = TRUE,
by = 1)))

poly_reg_fit %>%
augment(new_data) %>%
ggplot() +
geom_line(aes(x = lstat,

y = .pred,
color = as.factor(age),
linetype = as.factor(chas)),

lwd = 1) +
labs(x = "Proportion of Residents with Low Socioeconomic Status",

y = "Predicted Median Home Value",
title = "Estimated Median Home Values",
subtitle = "(by prevalence of low socioeconomic status)",
color = "% Homes Built \nPrior to 1940",
linetype = "On Charles River")

12

10

20

30

40

0 10 20 30

Proportion of Residents with Low Socioeconomic Status

P
re

di
ct

ed
 M

ed
ia

n
H

om
e

V
al

ue % Homes Built
Prior to 1940

10

25

50

On Charles River

0

1

(by prevalence of low socioeconomic status)

Estimated Median Home Values

This is a model we can interpret and utilize. Before we do, including higher-order terms in a
model requires some additional care.

Note: Since lstat_poly_2, the term corresponding to lstat2, is statistically significant, we
must keep the lower order term for lstat in the model. In general, if we have a statistically
significant higher-order, or interaction term in a model, then we must retain all of the associated
lower-order terms in the model, regardless of whether or not they are statistically significant.
For example, if we had a term for lstat·age2 in our model, then we must keep the individual
terms for lstat and age, the term for age2 and the term for lstat·age, regardless of whether
the p-values associated with those terms are small.

Interpreting a Model with Curvature

poly_reg_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 40.6120902 0.9504752 42.728194 0.00e+00
age 0.0763219 0.0124520 6.129314 0.00e+00

13

chas 4.0279077 1.0228822 3.937802 9.81e-05
lstat_poly_1 -2.6830521 0.1432861 -18.725144 0.00e+00
lstat_poly_2 0.0482845 0.0039480 12.230164 0.00e+00

Now that we have estimated coefficients, we can write down the estimated model form:

E [medv] ≈ 40.61 + 0.08 · age + 4.03 · chas − 2.68 · lstat + 0.05 · lstat2

From here, we see that older neighborhoods tend to have slightly higher median home values.
Neighborhoods along the Charles River have higher median home values. Before moving to
interpret the lstat variable, let’s formalize the interpretations associated with age and chas.

• Holding all variables other than age constant (controlling for them), an increase by
1 percentage point in the proportion of homes in a neighborhood built before 1940 is
associated with higher median home values by about $80, on average.

– Alternatively, given two otherwise similar neighborhoods (lstat and chas), the
neighborhood with a larger percentage of homes built before 1940 is expected to
have a higher median home value by about $80 per percentage point, on average.

• Holding all variables other than chas constant (controlling for them), median home
values for neighborhoods on the Charles River are expected to be about $4, 030 higher,
on average.

– Alternatively, given two otherwise similar (age and lstat) neighborhoods, the one
on the Charles River is expected to have approximately $4, 030 higher median home
values, on average, than the neighborhood away from the Charles River.

Because the effect of lstat is split across multiple terms, we need some way to aggregate that
effect. As a reminder, we are looking for rate of change in medv with respect to lstat. Those
of you with a calculus background will recognize that we are interested in finding the partial
derivative of our model with respect to lstat. For those of you without a calculus background,
you’ll just use the expression below:

Rate of Change in medv With Respect to lstat: (1)
βlstat + 2βlstat2 · lstat = −2.68 + 2 (0.05) · lstat (2)

The rate of change in median home values (medv) with respect to the percentage of residents
with low socioeconomic status now depends on the level of the percentage of residents with low
socioeconomic status. The associated drop in median home values is large for percentage point
increases from relatively low prevalence of residents with low socioeconomic status, but then for

14

neighborhoods with already high levels of residents with low socioeconomic status, the decrease
in median home values is less. For example, the difference in median home values between a
neighborhood with 10% of residents having low socioeconomic status and a neighborhood with
11% of residents having low socioeconomic status is expected to be about −2.68 + 0.1 · 10. That
is, we expect lower median home values by about $1, 680, on average. The difference in expected
median home values between a neighborhood with 20% of residents having low socioeconomic
status and a neighborhood with 21% though is expected to be about −2.68 + 0.1 · 20, or about
$680 less, on average.

The inclusion of these polynomial terms allows us to model more complex relationships and
potentially build models with better predictive value! There are a few things to beware of
though – these models are more complicated to interpret and we risk tricking ourselves into
believing our models are much more accurate than they will be in production (More on this
later in our course).

Interpretation with {marginaleffects}

As we saw in an earlier notebook, we can use the {marginaleffects} package to estimate the
marginal effect of a unit increase in lstat on median home values at different levels of the
lstat variable. We can also obtain confidence interval estimates in these effects as well.

counterfactual_lstat_df <- tibble(lstat = seq(0, 40, length.out = 500),
age = 50,
chas = 1)

mfx <- poly_reg_fit %>%
slopes(newdata = counterfactual_lstat_df,

variables = "lstat") %>%
tibble() %>%
#Not sure why, but slopes() is obliterating lstat values
mutate(lstat = seq(0, 40, length.out = 500))

mfx %>%
select(term, lstat, estimate, conf.low, conf.high, std.error) %>%
head(n = 10) %>%
kable() %>%
kable_styling()

term lstat estimate conf.low conf.high std.error

lstat 0.0000000 -2.683052 -2.963899 -2.402205 0.1432920
lstat 0.0801603 -2.675311 -2.954985 -2.395637 0.1426933
lstat 0.1603206 -2.667570 -2.946058 -2.389082 0.1420885

15

lstat 0.2404810 -2.659829 -2.937145 -2.382513 0.1414904
lstat 0.3206413 -2.652088 -2.928220 -2.375956 0.1408862

lstat 0.4008016 -2.644347 -2.919320 -2.369374 0.1402951
lstat 0.4809619 -2.636606 -2.910427 -2.362785 0.1397071
lstat 0.5611222 -2.628865 -2.901498 -2.356232 0.1391011
lstat 0.6412826 -2.621124 -2.892588 -2.349660 0.1385046
lstat 0.7214429 -2.613383 -2.883666 -2.343100 0.1379020

mfx %>%
select(lstat, estimate, conf.low, conf.high) %>%
mutate(lstat = seq(0, 40, length.out = 500)) %>%
ggplot() +
geom_line(aes(x = lstat, y = estimate),

color = "purple", lty = "dashed", lwd = 1.5) +
geom_ribbon(aes(x = lstat, ymin = conf.low, ymax = conf.high),

fill = "grey", alpha = 0.5) +
labs(x = "Pct Low Socioeconomic Status",

y = "Marginal Effect",
title = "Marginal Effects of Unit Increase in lstat")

−3

−2

−1

0

1

0 10 20 30 40

Pct Low Socioeconomic Status

M
ar

gi
na

l E
ffe

ct

Marginal Effects of Unit Increase in lstat

As we can see from the plot above, the marginal effect of a unit increase in the percentage of
residents with low socioeconomic status is expected to be a decrease in median home values up
until low socioeconomic status residents make up about 27% of the neighborhood population.

16

After this point, we expect the marginal effect to be an increase in median home values. We
see this also from our earlier plot of estimated median home values by prevalence of low
socioeconomic status, plotted at different thresholds of the age and chas variables.

Assessing Model Performance

Before we move on, let’s assess the performance of our new model. As a reminder, we had the
following benchmarks from the main effects model.

my_metrics <- metric_set(rsq, rmse)

(main_reg_fit %>%
augment(boston_train) %>%
my_metrics(medv, .pred) %>%
mutate(type = "train")
) %>%

bind_rows(
main_reg_fit %>%

augment(boston_test) %>%
my_metrics(medv, .pred) %>%
mutate(type = "test")

) %>%
pivot_wider(id_cols = .metric,

names_from = type,
values_from = .estimate) %>%

kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

.metric train test

rsq 0.5822417 0.5235821
rmse 5.9161187 6.4395620

We can compute the same metrics for our new model.

(poly_reg_fit %>%
augment(boston_train) %>%
my_metrics(medv, .pred) %>%
mutate(type = "train")
) %>%

bind_rows(

17

poly_reg_fit %>%
augment(boston_test) %>%
my_metrics(medv, .pred) %>%
mutate(type = "test")

) %>%
pivot_wider(id_cols = .metric,

names_from = type,
values_from = .estimate) %>%

kable() %>%
kable_styling(bootstrap_options = c("striped", "hover"))

.metric train test

rsq 0.7015881 0.6200447
rmse 5.0001432 5.8125488

We are doing quite a bit better now! The R-Squared value for our new model on the training
data is up to 70% (from 58% with the main effects model). We’ve also observed an improvement
in R-Squared on the test data – 62% versus 52%. Much more of the variation in median home
values is being explained by our curvi-linear model than was explained with our main effects
model. Similarly, we’ve observed improvements in the RMSE (root mean squared error). The
test RMSE for our main effects model was approximately 6.4, indicating that we could expect
our predictions to be accurate to within about $12, 800 on average. The test RMSE for our
curvi-linear model is approximately 5.8, indicating that we should expect our predictions to be
accurate to within about $11, 600 on average.

Summary

Okay, let’s recap. We worked with a new data set today – the boston housing data set. For
this particular application, we were interested in predicting median home values (medv) for
neighborhoods in 1970’s Boston, given

• age – the proportion of homes in the neighborhood built prior to 1940.
• lstat – the proportion of neighborhood residents having low socioeconomic status.
• chas – an indicator (dummy) variable for whether the neighborhood is along the Charles

River or not.

18

In our initial exploratory analysis, we saw visual evidence that the association between medv
and lstat was not a straight-line association. We suspected that a model allowing for a curved
relationship between lstat and medv would outperform a model that assumed a straight-line
relationship. We went ahead and built a model assuming straight line relationships between
medv and both age and lstat, but which also accounted for the location of the neighborhood
being on the Charles River or away from the Charles River. The terms in that model were
statistically significant, so we obtained some performance metrics for this model and used those
as a benchmark.

We then built a model allowing for curved relationships between medv and both age and lstat.
There wasn’t statistically significant evidence to keep the curvature between medv and age,
so we dropped it and returned to a linear relationship between medv and age. There was,
however, statistically significant evidence for a curved relationship between medv and lstat.
We interpreted our new model and calculated performance metrics for it, noting that the model
allowing for curvature out-performed our original model on the unseen test data.

In the next notebook, we’ll return to the penguins data and see what interaction terms allow
for in a model.

19

	Where We Stand
	Objectives
	A New Data Set: Boston Housing
	Motivating Interaction and Higher-Order Terms
	New Terminology
	Starting with a Main-Effects Model
	Building a Model Including Curvature (step_poly())
	Interpreting a Model with Curvature
	Assessing Model Performance

	Summary

