
Multiple Linear Regression

August 9, 2024

Table of contents

Objectives . 1
Simple Versus Multiple Linear Regression . 2

Training and Test Data . 3
EDA with Numerical Features . 3
Building a Multiple Linear Regression Model 5
Assessing our Fitted Model . 5

Summary . 14

Objectives

This notebook gives an overview of Multiple Linear Regression, where we’ll use more than one
feature/predictor to predict a numerical response variable. After reviewing this notebook, you
should be able to:

• Fit a multiple linear regression model to training data using tidymodels
• Assess that model’s performance on the training data by looking at global model utility

metrics, and by analyzing metrics for the model term.
• Interpret a multiple linear regression model with statistically significant predictors.
• Use a multiple linear regression model to make predictions on new data.
• Evaluate model performance on the test set.

1

Simple Versus Multiple Linear Regression

In the previous notebook, we learned that a simple linear regression model whose response
variable is y and whose sole predictor is x is of the form

y = β0 + β1 · x + ε or E [y] = β0 + β1 · x

Multiple linear regression models are quite similar, the difference being that these multiple
linear regression models contain multiple predictor variables: x1, x2, ... , xk. That is, these
models take the form

y = β0 + β1 · x1 + β2 · x2 + · · · + βkxk + ε

–or–

E [y] = β0 + β1 · x1 + β2 · x2 + · · · + βkxk

In a simple linear regression model, we could interpret the coefficient on the term containing
the predictor variable as a slope. That is, the β coefficient is the expected rate of change in
the response variable per unit change in the predictor variable. For example, a penguin whose
bill is 1mm longer than average is expected to have about 88.58g more mass than the average
penguin or for each additional millimeter of bill length, we expect a penguin to have about
88.58g more mass, on average.

For multiple linear regression models, we have similar interpretations as long as the model
terms are independent of one another (we’ll encounter scenarios where they are not when we
look at higher-order terms later in our course). That is, the interpretation of βi, the coefficient
on xi in our model is the expected change in the response variable associated with a unit change
in xi, while all other predictors are held constant.

� Model Coefficients as Slopes

For simple and multiple linear regression models where each model term contains a single
numerical predictor, we can interpret the corresponding β-coefficient as a slope, holding
all other predictors constant.
That is, for the multiple linear regression model

E [y] = β0 + β1x1 + β2x2 + · · · + βkxk

holding all other predictors constant, we expect a unit increase in xi to be associated
with an increase of about βi in the expected value of y as long as x1 through xk are
independent, numerical predictors.

Let’s move forward and see how to build, assess, and interpret a multiple linear regression
model. For simplicity and continuity, we’ll continue working with the palmerpenguins data
and try to predict body_mass_g using the other numerical features in the data set.

2

Training and Test Data

We’ll start by splitting our data into training and test sets, as usual.

set.seed(123)
penguin_splits <- initial_split(penguins)
penguins_train <- training(penguin_splits)
penguins_test <- testing(penguin_splits)

As a reminder, here’s the first few rows of our training data.

penguins_train %>%
head() %>%
kable() %>%
kable_styling()

species island bill_length_mm bill_depth_mm flipper_length_mm body_mass_g sex year

Gentoo Biscoe 44.5 14.3 216 4100 NA 2007
Adelie Torgersen 38.6 21.2 191 3800 male 2007
Gentoo Biscoe 45.3 13.7 210 4300 female 2008
Chinstrap Dream 52.8 20.0 205 4550 male 2008
Adelie Torgersen 37.3 20.5 199 3775 male 2009

Chinstrap Dream 43.2 16.6 187 2900 female 2007

EDA with Numerical Features

Let’s explore whether the numerical features in our data frame are visually associated with
penguin body mass.

p1 <- penguins_train %>%
ggplot() +
geom_point(aes(x = bill_length_mm, y = body_mass_g)) +
labs(x = "Bill Length (mm)",

y = "Body Mass (g)")

p2 <- penguins_train %>%
ggplot() +
geom_point(aes(x = bill_depth_mm, y = body_mass_g)) +
labs(x = "Bill Depth (mm)",

3

y = "Body Mass (g)")

p3 <- penguins_train %>%
ggplot() +
geom_point(aes(x = flipper_length_mm, y = body_mass_g)) +
labs(x = "Flipper Length (mm)",

y = "Body Mass (g)")

p4 <- penguins_train %>%
ggplot() +
geom_point(aes(x = year, y = body_mass_g)) +
labs(x = "Year",

y = "Body Mass (g)")

(p1 + p2 + p3)/p4

Warning: Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).
Removed 2 rows containing missing values or values outside the scale range
(`geom_point()`).

3000

4000

5000

6000

40 50 60

Bill Length (mm)

B
od

y
M

as
s

(g
)

3000

4000

5000

6000

15.017.520.0

Bill Depth (mm)

B
od

y
M

as
s

(g
)

3000

4000

5000

6000

170180190200210220230

Flipper Length (mm)

B
od

y
M

as
s

(g
)

3000

4000

5000

6000

2007.0 2007.5 2008.0 2008.5 2009.0

Year

B
od

y
M

as
s

(g
)

4

It looks like there are positive associations between penguin body mass and the bill measurements
as well as the flipper measurement. The plot with the year variable is difficult to read (which
we’ll return to later) – for now, we’ll include the year variable in our model as another numerical
predictor.

Building a Multiple Linear Regression Model

The strategy for building a multiple linear regression model in {tidymodels} is exactly the
same as the strategy for building a simple linear regression.

• Create a model specification using linear_reg() and set its fitting engine to "lm".
• Create a model recipe by passing the model formula and data to the recipe() function.
• Package the model and recipe together into a workflow().
• Fit the workflow by passing it to fit() with the training data.

Let’s see that in action.

mass_multi_spec <- linear_reg() %>%
set_engine("lm")

mass_multi_rec <- recipe(body_mass_g ~ bill_length_mm + bill_depth_mm + flipper_length_mm + year, data = penguins_train)

mass_multi_wf <- workflow() %>%
add_model(mass_multi_spec) %>%
add_recipe(mass_multi_rec)

mass_multi_fit <- mass_multi_wf %>%
fit(penguins_train)

There it is – we have our model. Let’s check it out.

Assessing our Fitted Model

As a reminder, we’ll run several levels of assessment.

• A global model assessment (using glance()), including

– the global test for model utility (looking at the p.value)
– an assessment of the proportion of variation in the response variable explained by

our model (looking at the adj.r.squared)

5

– understanding the expected “accuracy” of our model (looking at the sigma value,
which measures the residual standard error, and constructing a naive confidence
interval)

• Individual model-term analysis (using fitted_model %>% extract_fit_engine() %>%
tidy()), including

– assessing the statistical significance of individual model terms (looking at the
p.values)

– identifying and interpreting estimated model coefficients (looking at the estimate)
– identifying and interpreting the uncertainty in these coefficient estimates (looking

at the std.error to construct confidence intervals)

• An unbiased assessment of model performance

– Since the model knew the true body masses of the penguins that it is attempting to
predict, it had an unfair advantage in predicting those values. Think of it this way,
if you have a practice exam with an answer key (which you get to look at), then
just because you do well on the practice exam doesn’t mean you are well-prepared
for the real exam – the same holds true for the model.

– We’ll use our model to make predictions for the body mass of penguins in our test
data.

– Once we have those questions, we’ll compute global model performance metrics like
RMSE and R-Squared.

∗ Because the model didn’t know that these penguins existed, the model has no
advantage in predicting their body mass. Assessing the model performance on
these test penguins leaves the assessment unbiased.

Global Model Assessment

Let’s use glance() to get some very high-level metrics about our overall model’s estimated
performance.

mass_multi_fit %>%
glance() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.7808404 0.7773478 387.1782 223.571 0 4 -1886.198 3784.396 3805.667 37626655 251 256

6

First, we can conduct the global test for model utility. Since this is the first time we’ve really
done such a test, a reminder of the hypotheses appears below.

H0 : β1 = β2 = β3 = β4 = 0
Ha : At least one of the coefficients is non-zero

The p.value for this test is extremely small, so we have evidence to suggest that at least one
of the model’s predictor terms has a non-zero coefficient. That’s good news – there is atleast
some value to our model!

We can see from the adj.r.squared value that approximately 77.73% of the variation in
penguin body mass is explained by this model.

Finally, we can assess the residual standard error (sigma) for the model. This value helps
us estimate how accurate we should expect our predictions to be. At approximately 95%
confidence, we can expect our predictions to be accurate to within about ± 774.36 grams. As
a reminder, however, this estimate is biased and may be too optimistic about the errors our
model will make in the future. We should recalculate this metric (and the adjusted R squared
metric) using unseen data, such as the test data.

Assessment of Individual Model Terms

We’ll pipe our fitted model to extract_fit_engine() and tidy() to obtain the data frame
of model terms and corresponding metrics.

mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 232658.774875 60591.365347 3.8398008 0.0001560
bill_length_mm 1.530334 5.984567 0.2557134 0.7983815
bill_depth_mm 28.587515 15.997312 1.7870199 0.0751409
flipper_length_mm 52.753150 2.783871 18.9495697 0.0000000
year -119.323909 30.224297 -3.9479466 0.0001024

The first thing we should do is look at the p.values associated with the individual model
terms. At this stage, if any model terms are not statistically significant we should remove them
one-by-one. We’ll do so by removing the predictor with the highest p.value first.

7

Before we begin removing predictors from the model, perhaps this process seems a bit mysterious.
It is worth looking at a visual of the estimated model coefficients and their plausible ranges.

mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
filter(term != "Intercept") %>%
ggplot() +
geom_errorbarh(aes(y = term,

xmin = estimate - (2*std.error),
xmax = estimate + (2*std.error),
color = term),

show.legend = FALSE) +
geom_point(mapping = aes(x = estimate, y = term, color = term),

show.legend = FALSE) +
geom_vline(xintercept = 0, linetype = "dashed") +
labs(x = "Estimated Model Coefficient",

y = "")

bill_depth_mm

bill_length_mm

flipper_length_mm

year

−100 0

Estimated Model Coefficient

We can see that the plausible ranges for coefficients on bill_length_mm and bill_depth_mm
overlap with 0. If these coefficients were 0, then the corresponding model terms would drop
out of the model. This is what statistical insignificance means.

Let’s refit the model without the bill_length_mm predictor and see whether bill_length_mm
should still be removed.

8

mass_multi_spec <- linear_reg() %>%
set_engine("lm")

mass_multi_rec <- recipe(body_mass_g ~ bill_length_mm + flipper_length_mm + year, data = penguins_train)

mass_multi_wf <- workflow() %>%
add_model(mass_multi_spec) %>%
add_recipe(mass_multi_rec)

mass_multi_fit <- mass_multi_wf %>%
fit(penguins_train)

mass_multi_fit %>%
extract_fit_engine() %>%
tidy() %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 225991.977989 60739.032170 3.7207043 0.0002450
bill_length_mm 3.794827 5.874269 0.6460083 0.5188618
flipper_length_mm 49.895057 2.288486 21.8026532 0.0000000
year -115.523634 30.280317 -3.8151395 0.0001713

Bill length in millimeters is still just above the threshold for statistical significance. We’ll drop
it from our model and refit.

mass_multi_spec <- linear_reg() %>%
set_engine("lm")

mass_multi_rec <- recipe(body_mass_g ~ flipper_length_mm + year, data = penguins_train)

mass_multi_wf <- workflow() %>%
add_model(mass_multi_spec) %>%
add_recipe(mass_multi_rec)

mass_multi_fit <- mass_multi_wf %>%
fit(penguins_train)

coef_df <- mass_multi_fit %>%

9

extract_fit_engine() %>%
tidy()

coef_df %>%
kable() %>%
kable_styling()

term estimate std.error statistic p.value

Intercept 227916.26652 60596.048460 3.76124 0.0002101
flipper_length_mm 50.87429 1.712514 29.70736 0.0000000
year -116.49701 30.207960 -3.85650 0.0001460

Okay, both of the remaining predictors, flipper_length_mm and year are statistically signifi-
cant. This gives us our “final” model form of E [body_mass_g] = β0+β1 ·flipper_length_mm+
β2 · year, where the estimated model has β0 ≈ 227916.3, β1 ≈ 50.87, and β2 ≈ -116.5.

At this point, we have a model that we can make predictions and interpretations with. In
terms of the model coefficients,

• We expect penguins with longer flippers to have greater mass. On average, with year
being held constant, we expect a unit increase in flipper length to be associated with
approximately 50.87g additional mass.

• We expect penguins to have lower body mass with each passing year. On average, holding
the flipper length constant, similar penguins from one year to the next are expected to
have approximately 116.5g less body mass.

Interpreting Marginal Effects with {marginaleffects}

So far, we have been able to interpret each model coefficient as a slope. This is relatively
straight forward. However, as we explore more complex models – particularly those with mixed
effects and higher order terms – the interpretation of the impact of a predictor on the response
is more difficult to extract. This is particularly true for those without a calculus background.

Fortunately, the {marginaleffects} package can help us. We’ll introduce it now because
this is a simple case and this early exposure will make it easier for us to use the functionality
later.

library(marginaleffects)

counterfactual_flipper_df <- tibble(flipper_length_mm = seq(170, 235, length.out = 500),
year = 2019)

10

mfx <- mass_multi_fit %>%
extract_fit_engine() %>%
slopes(newdata = counterfactual_flipper_df,

variables = "flipper_length_mm",
conf_level = 0.95) %>%

tibble()

mfx %>%
select(term, flipper_length_mm, estimate, conf.low, conf.high, std.error) %>%
head(n = 10) %>%
kable() %>%
kable_styling()

term flipper_length_mm estimate conf.low conf.high std.error

flipper_length_mm 170.0000 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 170.1303 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 170.2605 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 170.3908 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 170.5210 50.87429 47.51951 54.22906 1.71165

flipper_length_mm 170.6513 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 170.7816 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 170.9118 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 171.0421 50.87429 47.51951 54.22906 1.71165
flipper_length_mm 171.1723 50.87429 47.51951 54.22906 1.71165

mfx %>%
select(flipper_length_mm, estimate, conf.low, conf.high) %>%
ggplot() +
geom_line(aes(x = flipper_length_mm, y = estimate), color = "purple", lty = "dashed", lwd = 1.5) +
geom_ribbon(aes(x = flipper_length_mm, ymin = conf.low, ymax = conf.high),

fill = "grey", alpha = 0.5) +
labs(x = "Flipper Length (mm)",

y = "Marginal Effect",
title = "Marginal Effects of Unit Increase in Flipper Length")

11

49

51

53

180 200 220

Flipper Length (mm)

M
ar

gi
na

l E
ffe

ct
Marginal Effects of Unit Increase in Flipper Length

Reading off of the graph, we can see that the estimated marginal effect of an increase of 1mm in
flipper length is associated with an estimated increase of just under 50g, and that this expected
increase is independent of the current flipper length. Furthermore, we can see that we are 95%
confident that the marginal effect of a unit increase in flipper length on expected body mass
is somewhere between 47.5g/mm and 54.25g/mm. These estimates agree with the values we
calculated from the tabular output of the regression model above.

Returning to Global Performance Metrics

Since our model form has changed, we need to reassess our global model metrics. They will
have all shifted.

mass_multi_fit %>%
glance() %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

r.squared adj.r.squared sigma statistic p.value df logLik AIC BIC deviance df.residual nobs

0.7776845 0.775927 388.4116 442.5111 0 2 -1888.028 3784.056 3798.237 38168479 253 256

It is no surprise that our model as a whole still has a significant p.value. We removed those
predictors which we we were not confident had non-zero coefficients.

12

Our adj.r.squared value has changed slightly, and our final model explains approximately
77.59% of the variability in penguin body mass.

Finally, our residual standard error has also changed slightly. We now expect our predictions
to be accurate to within about ± 776.82g.

Assessing Model Performance on Unseen (Test) Observations

We recognize that the adj.r.squared and residual standard error estimates from the global
model metrics may be too optimistic. Again, this is because these measures are associated
with how well our model predicts the training observations, where the model knew the answers.
We can reconstruct these metrics using the test data to obtain unbiased estimates of model
performance. We’ll do the following:

• Create a set of metrics (using metric_set()) that we wish to use to evaluate our model.
• Augment our test data set with a column of predictions of body mass coming from our

model.
• Evaluate our metrics by comparing the true responses (body_mass_g) to the predicted

responses (.pred)

my_metrics <- metric_set(rmse, rsq)

mass_multi_fit %>%
augment(penguins_test) %>%
select(body_mass_g, .pred) %>%
my_metrics(body_mass_g, .pred) %>%
kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

.metric .estimator .estimate

rmse standard 376.6980462
rsq standard 0.7450228

We see that the R Squared value is slightly lower on the test data than it was on the training
data. As a reminder, a lower R Squared value indicates that a lower proportion of the variation
in the response is explained by our model – that is, the model performs slightly worse on the
test data according to the R Squared metric.

Note that root mean squared error is comparable to the residual standard error (sigma), as
it measures the average prediction error. Similarly, we see a slightly lower rmse on the test
data than we saw on the training data. As a reminder, lower rmse indicates better predictive

13

performance, so this model performs slightly better on the test data according to the rmse
metric. More on this later in our course as well.

A Note on Comparing Model Metrics: The residual standard error (sigma) from the
glance() function and the rmse metric we’ve computed just now utilize slightly different
formulas, so they aren’t directly comparable (particularly in cases with very small data). One
thing we can do is to use glance() for the global test of model utility only (interpreting that
p.value), and then we can compute rsq and rmse for both the training and test sets and
compare those to one another.

(mass_multi_fit %>%
augment(penguins_test) %>%
select(body_mass_g, .pred) %>%
my_metrics(body_mass_g, .pred) %>%
mutate(type = "test")) %>%

bind_rows(
(mass_multi_fit %>%

augment(penguins_train) %>%
select(body_mass_g, .pred) %>%
my_metrics(body_mass_g, .pred) %>%
mutate(type = "train"))

) %>%
pivot_wider(id_cols = type,

names_from = .metric,
values_from = .estimate) %>%

kable() %>%
kable_styling(bootstrap_options = c("hover", "striped"))

type rmse rsq

test 376.698 0.7450228
train 386.129 0.7776845

Summary

Okay, we’ve covered quite a bit in this notebook! Here’s a recap of the most important ideas.

• Multiple linear regressions are extensions of simple linear regression models, in which we
have multiple model terms containing predictor variables.

14

• A multiple linear regression model takes the form E [y] = β0 + β1 · x1 + β2 · x2 + · · · + βkxk,
where y is the response variable and x1, x2, · · · , xk are predictors.

• The β0 “coefficient” is the intercept for the model – the expected response if all predictor
variables take on the value 0.

• Each βi for i > 0 can be interpreted as a slope coefficient for the corresponding model
term, when all other predictors are held constant.

• We run multiple levels of assessment on our models.

– We use fitted_model %>% glance() to obtain the p.value associated with a global
test for model utility. That is, we test the hypotheses

H0 : β1 = β2 = · · · = βk = 0
Ha : At least one of the model coefficients is non-zero

– We use fitted_model %>% extract_fit_engine() %>% tidy() to obtain esti-
mated model coefficients and diagnostics.

∗ In general, we look to the p.value column to determine whether model terms
are statistically significant or not.

∗ In the case where model terms are not statistically significant, we remove one
predictor at a time (according to the highest p.value), and refit the model. We
continue in this fashion until all remaining terms are statistically significant.

∗ At this point, we have an estimated model and we can construct it using the
estimated β coefficients found in the estimate column.

∗ The corresponding values in the std.error column help us build confidence
intervals for the β coefficients, giving us greater understanding of the uncertainty
in our model.

– Finally, we can compute performance metrics for our model on both the training
and test data sets.

∗ In general, we should expect our models to perform better on training data
(since the model has access to the true responses during the fitting process),
however this is not always the case.

∗ Comparing these training and test metrics is a great way to gain insight into
the current fit of our model and how we might be able to improve it. (More on
this idea later in our course)

15

	Objectives
	Simple Versus Multiple Linear Regression
	Training and Test Data
	EDA with Numerical Features
	Building a Multiple Linear Regression Model
	Assessing our Fitted Model

	Summary

