MAT 350: The Row Reduction Procedure via an Example

Dr. Gilbert

September 18, 2025

Warm-Up Problems

Example 1: Determine the number of solutions to the linear systems corresponding to the augmented coefficient matrices in row echelon form below.

\[a)~~\left[\begin{array}{rr|r} 3 & -2 & 5\\ 0 & -5 & 10\end{array}\right]~~~~~~b) \left[\begin{array}{rr|r} 2 & 7 & -2\\ 0 & 0 & 0\end{array}\right]~~~~~~c) \left[\begin{array}{rr|r} -1 & -6 & 11\\ 0 & 0 & 3\end{array}\right]\]

\[d)~~\left[\begin{array}{rrr|r} 1 & 0 & 8 & 4\\ 0 & -6 & 2 & 1\\ 0 & 0 & 9 & 0\\ 0 & 0 & 0 & 0 \end{array}\right]~~~~~~e) \left[\begin{array}{rrrr|r} 1 & 8 & -2 & 3 & 0\\ 0 & 0 & 2 & 0 & 1\end{array}\right]\]

Example 2: Describe the solutions to the linear systems corresponding to the augmented coefficient matrices in reduced row echelon form below.

\[a)~~\left[\begin{array}{rr|r} 1 & 0 & -3\\ 0 & 1 & 8\end{array}\right]~~~~~~b) \left[\begin{array}{rrr|r} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0\end{array}\right]~~~~~~c) \left[\begin{array}{rrr|r} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{array}\right]\]

\[d)~~\left[\begin{array}{rrr|r} 1 & 0 & 0 & 4\\ 0 & 1 & 0 & -6\\ 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 0 \end{array}\right]~~~~~~e) \left[\begin{array}{rrrr|r} 1 & 8 & 0 & 3 & 1\\ 0 & 0 & 1 & 0 & 4\end{array}\right]\]

Purpose

This slide deck just contains a walkthrough of a single example of solving a system via row reduction.

As we work through the example…

  • focus on the strategy we are utilizing

    • see how we strategically work through the matrix entries
    • identify how, and why, we choose particular scalars involved in our row replacement operations (\(R_i \leftarrow R_i + cR_j\))
  • build comfort with that row replacement operation

Note: Recall that we stated our row replacement operation as \(R_i \leftarrow R_i + cR_j\), where we replace a row with the sum of that row and a scaled copy of another row.

At times, we use an altered version of the replacement operation, \(R_i \leftarrow c_1R_i + c_2R_j\) which does row scaling and replacement all at once to save time.

Row Reduction – An Example

Example: Find all solutions to the linear system

\[\left\{\begin{array}{rcrcrcrcrcr} 2x_1 & - & x_2 & + & 3x_3 & & & + & 4x_5 & = & 10\\ x_1 & + & 2x_2 & - & 2x_3 & + & 3x_4 & - & x_5 & = & -1\\ & & x_2 & - & 4x_3 & - & x_4 & + & 2x_5 & = & 7\\ 3x_1 & - & 2x_2 & + & x_3 & + & 2x_4 & & & = & 5\\ -x_1 & + & 3x_2 & & & + & x_4 & + & 2x_5 & = & 3\end{array}\right.\]

We start by constructing the corresponding augmented coefficient matrix…

\[\left[\begin{array}{rrrrr|r} 2 & -1 & 3 & 0 & 4 & 10\\ 1 & 2 & -2 & 3 & -1 & -1\\ 0 & 1 & -4 & -1 & 2 & 7\\ 3 & -2 & 1 & 2 & 0 & 5\\ -1 & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} 2 & -1 & 3 & 0 & 4 & 10\\ 1 & 2 & -2 & 3 & -1 & -1\\ 0 & 1 & -4 & -1 & 2 & 7\\ 3 & -2 & 1 & 2 & 0 & 5\\ -1 & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{red}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right] \substack{R_1 \leftrightarrow R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{1} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

We’ll use it to “zero-out” all the entries underneath it!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + \left(-2\right)R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{red}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

We’ll use it to “zero-out” all the entries underneath it!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

We’ll use it to “zero-out” all the entries underneath it!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\substack{R_4 \leftarrow R_4 + \left(-3\right)R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

We’ll use it to “zero-out” all the entries underneath it!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

We’ll use it to “zero-out” all the entries underneath it!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right] \substack{R_5 \leftarrow R_5 + R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{0} & 5 & -2 & 4 & 1 & 2\end{array}\right]\]

From here, we’ll start the row reduction procedure.

We’ll start with the leftmost column, where we want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

We’ve got our pivot in column 1

We’ll use it to “zero-out” all the entries underneath it!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{blue}{0} & 5 & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_2\leftrightarrow R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{red}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_3 \leftarrow R_3 + 5R_2\\ \longrightarrow}\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_4\leftarrow R_4 + 8R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_5 \leftarrow R_5 + \left(-5\right)R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{0} & 18 & 9 & -9 & -33\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & 18 & 9 & -9 & -33\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & 18 & 9 & -9 & -33\end{array}\right]\]

Now, we’ll move to the second column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below that pivot to be \(0\)

Note: We worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & 18 & 9 & -9 & -33\end{array}\right]\]

Next, we’ll move on to the third column

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-13} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-25} & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]

Next, we’ll move on to the third column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-25} & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]

Next, we’ll move on to the third column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!

We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-25} & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right] \substack{R_4 \leftarrow \left(-25\right)R_3 + 13R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]

Next, we’ll move on to the third column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!

We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]

Next, we’ll move on to the third column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!

We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right] \substack{R_5 \leftarrow 13R_5 + 18R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{0} & -81 & 171 & 417\end{array}\right]\]

Next, we’ll move on to the third column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!

We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -81 & 171 & 417\end{array}\right]\]

Next, we’ll move on to the third column, where we’ll want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!

We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -81 & 171 & 417\end{array}\right]\]

These numbers are getting kind of big – let’s shrink some back down a bit…

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -81 & 171 & 417\end{array}\right] \substack{R_5 \leftarrow R_5 + R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -1 & 18 & 74\end{array}\right]\]

These numbers are getting kind of big – let’s shrink some back down a bit…

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -1 & 18 & 74\end{array}\right]\]

Now we’ll move to the fourth column

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\end{array}\right] \substack{R_4\leftrightarrow R_5} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right] \substack{R_4 \leftarrow \left(-1\right)R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{1} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{1} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero out” the entry below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right] \substack{R_5 \leftarrow R_5 + \left(-80\right)R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{0} & 1287 & 5577 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero out” the entry below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 1287 & 5577 \end{array}\right]\]

Now we’ll move to the fourth column, where we’ll again want

  1. A \(1\) in the pivot position (if possible, without fractions)
  2. Every entry below the pivot to be \(0\)

Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!

Now that we have a \(1\) in the pivot position, we’ll use it to “zero out” the entry below it.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 1287 & 5577 \end{array}\right]\]

Those numbers in the bottom row have gotten quite large again – we’ll scale them down

Both non-zero entries are divisible by \(429\)

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 1287 & 5577 \end{array}\right] \substack{R_5 \leftarrow \frac{1}{429}R_5} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 3 & 13 \end{array}\right]\]

Those numbers in the bottom row have gotten quite large again – we’ll scale them down

Both non-zero entries are divisible by \(429\)

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{3} & 13 \end{array}\right]\]

Those numbers in the bottom row have gotten quite large again – we’ll scale them down

Both non-zero entries are divisible by \(429\)

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

We’ve made it to Row Echelon Form. From here, we see that

  1. There are solutions to the system, since the rightmost column is not a pivot column.
  2. There is a unique solution to the system, since every column to the left of the augmenting line is a pivot column.

Unfortunately, we can’t read the solutions off from this matrix – we need Reduced Row Echelon Form for that.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

  • To get to Row Echelon Form, we worked from the top-left down towards the bottom-right, “zeroing-out” entries below pivots as we went.
  • To get to Reduced Row Echelon Form, we do the opposite – work from bottom-right up towards the top-left, “zeroing-out” entries above pivots as we go.

We’re still going to try to put off fractions until we are forced into them.

This might require changing the values of our pivot entries, but none of our zeroes should be changed.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-18} & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-18} & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_4 \leftarrow R_4 + 6R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow 3R_3 + \left(-16\right)R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{red}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2 \leftarrow 3R_2 + \left(-2\right)R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{red}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1 \leftarrow 3R_1 + R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{darkorange}{9} & \color{red}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Let’s begin from the column just to the left of the augmenting line, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{darkorange}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{red}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{darkorange}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow R_3 + 33R_4} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{red}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2 \leftarrow R_2 + 3R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1\leftarrow R_1 + \left(-9\right)R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll move back to the fourth column, where we’ll

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column, where we

  1. use the pivot to “zero-out” the entries above it

Before we do that, the non-zero entries in the third row are large but they’re both divisible by \(13\), so let’s scale that row.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow \frac{1}{13}R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column, where we

  1. use the pivot to “zero-out” the entries above it

Before we do that, the non-zero entries in the third row are large but they’re both divisible by \(13\), so let’s scale that row.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column, where we

  1. use the pivot to “zero-out” the entries above it

Before we do that, the non-zero entries in the third row are large but they’re both divisible by \(13\), so let’s scale that row.

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2\leftarrow R_2 + \left(-4\right)R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column, where we

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column, where we

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1 \leftarrow R_1 + \left(-2\right)R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Next, we move back again to the third column, where we

  1. use the pivot to “zero-out” the entries above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Continuing on, we move back to the second column,

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{red}{6} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Continuing on, we move back to the second column, where we

  1. use the pivot to “zero-out” the entry above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{red}{6} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1 \leftarrow R_1 + \left(-2\right)R_2} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{red}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Continuing on, we move back to the second column, where we

  1. use the pivot to “zero-out” the entry above it

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1\leftarrow \frac{1}{3}R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2 \leftarrow \frac{1}{3}R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow \left(\frac{-1}{3}\right)R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_5\leftarrow \frac{1}{3}R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & 13/3 \end{array}\right]\]

Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system

Row Reduction – An Example

\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & 13/3 \end{array}\right]\]

Finally, after all of that, we’ve discovered the solution to the system…

\[x_1 = \frac{-10}{3},~~~x_2 = \frac{-13}{3},~~~x_3 = \frac{-5}{3},~~~x_4 = 4,~~~x_5 = \frac{13}{3}\]

Comments

  1. Row reduction is a tedious procedure that requires lots of care and attention to detail.
  2. Row Echelon Form tells us about the number of solutions to a linear system.
  3. If we want to know what those solutions are, then we’ll need to obtain Reduced Row Echelon Form

Obtaining Row Echelon Form: Start from the leftmost column, use the pivot in the top-left position to “zero-out” the entries below the pivot, move to the second column and do the same, keep working from the top-left to bottom-right of the augmented coefficient matrix.

\(\bigstar\) The best pivots are \(1\)’s because they are easy to use – scale or swap rows to put a \(1\) in the pivot position if possible, but it’s probably not worth doing if it forces you to deal with fractions.

Obtaining Reduced Row Echelon Form: Start with the rightmost pivot and use it to “zero-out” the entries above it, move to the next pivot towards the “northwest” and do the same, continue moving from the bottom-right to top-left of the augmented coefficient matrix.

  • Only try to reach RREF in cases where solutions to the system exist.

Unfortunately, the only path to comfort here is with practice.