September 18, 2025
Example 1: Determine the number of solutions to the linear systems corresponding to the augmented coefficient matrices in row echelon form below.
\[a)~~\left[\begin{array}{rr|r} 3 & -2 & 5\\ 0 & -5 & 10\end{array}\right]~~~~~~b) \left[\begin{array}{rr|r} 2 & 7 & -2\\ 0 & 0 & 0\end{array}\right]~~~~~~c) \left[\begin{array}{rr|r} -1 & -6 & 11\\ 0 & 0 & 3\end{array}\right]\]
\[d)~~\left[\begin{array}{rrr|r} 1 & 0 & 8 & 4\\ 0 & -6 & 2 & 1\\ 0 & 0 & 9 & 0\\ 0 & 0 & 0 & 0 \end{array}\right]~~~~~~e) \left[\begin{array}{rrrr|r} 1 & 8 & -2 & 3 & 0\\ 0 & 0 & 2 & 0 & 1\end{array}\right]\]
Example 2: Describe the solutions to the linear systems corresponding to the augmented coefficient matrices in reduced row echelon form below.
\[a)~~\left[\begin{array}{rr|r} 1 & 0 & -3\\ 0 & 1 & 8\end{array}\right]~~~~~~b) \left[\begin{array}{rrr|r} 1 & 0 & 0 & 0\\ 0 & 1 & 1 & 0\\ 0 & 0 & 0 & 0\end{array}\right]~~~~~~c) \left[\begin{array}{rrr|r} 1 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1\end{array}\right]\]
\[d)~~\left[\begin{array}{rrr|r} 1 & 0 & 0 & 4\\ 0 & 1 & 0 & -6\\ 0 & 0 & 1 & 3\\ 0 & 0 & 0 & 0 \end{array}\right]~~~~~~e) \left[\begin{array}{rrrr|r} 1 & 8 & 0 & 3 & 1\\ 0 & 0 & 1 & 0 & 4\end{array}\right]\]
This slide deck just contains a walkthrough of a single example of solving a system via row reduction.
As we work through the example…
focus on the strategy we are utilizing
build comfort with that row replacement operation
Note: Recall that we stated our row replacement operation as \(R_i \leftarrow R_i + cR_j\), where we replace a row with the sum of that row and a scaled copy of another row.
At times, we use an altered version of the replacement operation, \(R_i \leftarrow c_1R_i + c_2R_j\) which does row scaling and replacement all at once to save time.
Example: Find all solutions to the linear system
\[\left\{\begin{array}{rcrcrcrcrcr} 2x_1 & - & x_2 & + & 3x_3 & & & + & 4x_5 & = & 10\\ x_1 & + & 2x_2 & - & 2x_3 & + & 3x_4 & - & x_5 & = & -1\\ & & x_2 & - & 4x_3 & - & x_4 & + & 2x_5 & = & 7\\ 3x_1 & - & 2x_2 & + & x_3 & + & 2x_4 & & & = & 5\\ -x_1 & + & 3x_2 & & & + & x_4 & + & 2x_5 & = & 3\end{array}\right.\]
We start by constructing the corresponding augmented coefficient matrix…
\[\left[\begin{array}{rrrrr|r} 2 & -1 & 3 & 0 & 4 & 10\\ 1 & 2 & -2 & 3 & -1 & -1\\ 0 & 1 & -4 & -1 & 2 & 7\\ 3 & -2 & 1 & 2 & 0 & 5\\ -1 & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
\[\left[\begin{array}{rrrrr|r} 2 & -1 & 3 & 0 & 4 & 10\\ 1 & 2 & -2 & 3 & -1 & -1\\ 0 & 1 & -4 & -1 & 2 & 7\\ 3 & -2 & 1 & 2 & 0 & 5\\ -1 & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column
\[\left[\begin{array}{rrrrr|r} \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{red}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
\[\left[\begin{array}{rrrrr|r} \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
\[\left[\begin{array}{rrrrr|r} \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right] \substack{R_1 \leftrightarrow R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{red}{1} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
\[\left[\begin{array}{rrrrr|r} \color{blue}{1} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
We’ll use it to “zero-out” all the entries underneath it!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{red}{2} & -1 & 3 & 0 & 4 & 10\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + \left(-2\right)R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{red}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
We’ll use it to “zero-out” all the entries underneath it!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
We’ll use it to “zero-out” all the entries underneath it!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{3} & -2 & 1 & 2 & 0 & 5\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\substack{R_4 \leftarrow R_4 + \left(-3\right)R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{red}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
We’ll use it to “zero-out” all the entries underneath it!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
We’ll use it to “zero-out” all the entries underneath it!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{-1} & 3 & 0 & 1 & 2 & 3\end{array}\right] \substack{R_5 \leftarrow R_5 + R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{red}{0} & 5 & -2 & 4 & 1 & 2\end{array}\right]\]
From here, we’ll start the row reduction procedure.
We’ll start with the leftmost column, where we want
We’ve got our pivot in column 1
We’ll use it to “zero-out” all the entries underneath it!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & 2 & -2 & 3 & -1 & -1\\ \color{blue}{0} & -5 & 7 & -6 & 6 & 12\\ \color{blue}{0} & 1 & -4 & -1 & 2 & 7\\ \color{blue}{0} & -8 & 7 & -7 & 3 & 8\\ \color{blue}{0} & 5 & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_2\leftrightarrow R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{red}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{1} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{-5} & 7 & -6 & 6 & 12\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_3 \leftarrow R_3 + 5R_2\\ \longrightarrow}\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{red}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{-8} & 7 & -7 & 3 & 8\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_4\leftarrow R_4 + 8R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{red}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{5} & -2 & 4 & 1 & 2\end{array}\right] \substack{R_5 \leftarrow R_5 + \left(-5\right)R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{red}{0} & 18 & 9 & -9 & -33\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{red}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & 18 & 9 & -9 & -33\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & 18 & 9 & -9 & -33\end{array}\right]\]
Now, we’ll move to the second column, where we’ll want
Note: We worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero-out” all the entries below it
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & -2 & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & -4 & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & -13 & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & -25 & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & 18 & 9 & -9 & -33\end{array}\right]\]
Next, we’ll move on to the third column
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-13} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-25} & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]
Next, we’ll move on to the third column, where we’ll want
Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-25} & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]
Next, we’ll move on to the third column, where we’ll want
Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!
We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{-25} & -15 & 19 & 64\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right] \substack{R_4 \leftarrow \left(-25\right)R_3 + 13R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{red}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]
Next, we’ll move on to the third column, where we’ll want
Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!
We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right]\]
Next, we’ll move on to the third column, where we’ll want
Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!
We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{18} & 9 & -9 & -33\end{array}\right] \substack{R_5 \leftarrow 13R_5 + 18R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{red}{0} & -81 & 171 & 417\end{array}\right]\]
Next, we’ll move on to the third column, where we’ll want
Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!
We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{red}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -81 & 171 & 417\end{array}\right]\]
Next, we’ll move on to the third column, where we’ll want
Note: Again, we’ve worked hard on those blue entries – their values should not change at any point!
We have a pivot in row three, so we’ll use it to “zero-out” all the entries below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -81 & 171 & 417\end{array}\right]\]
These numbers are getting kind of big – let’s shrink some back down a bit…
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -81 & 171 & 417\end{array}\right] \substack{R_5 \leftarrow R_5 + R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -1 & 18 & 74\end{array}\right]\]
These numbers are getting kind of big – let’s shrink some back down a bit…
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & 3 & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & -1 & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & -11 & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 80 & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -1 & 18 & 74\end{array}\right]\]
Now we’ll move to the fourth column
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\end{array}\right] \substack{R_4\leftrightarrow R_5} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{-1} & 18 & 74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right] \substack{R_4 \leftarrow \left(-1\right)R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{1} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{1} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero out” the entry below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{80} & -153 & -343 \end{array}\right] \substack{R_5 \leftarrow R_5 + \left(-80\right)R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{red}{0} & 1287 & 5577 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero out” the entry below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{red}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{red}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{red}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 1287 & 5577 \end{array}\right]\]
Now we’ll move to the fourth column, where we’ll again want
Note: Remember that, we’ve worked hard on those blue entries – their values should not change at any point!
Now that we have a \(1\) in the pivot position, we’ll use it to “zero out” the entry below it.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 1287 & 5577 \end{array}\right]\]
Those numbers in the bottom row have gotten quite large again – we’ll scale them down
Both non-zero entries are divisible by \(429\)
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 1287 & 5577 \end{array}\right] \substack{R_5 \leftarrow \frac{1}{429}R_5} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & 3 & 13 \end{array}\right]\]
Those numbers in the bottom row have gotten quite large again – we’ll scale them down
Both non-zero entries are divisible by \(429\)
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{3} & 13 \end{array}\right]\]
Those numbers in the bottom row have gotten quite large again – we’ll scale them down
Both non-zero entries are divisible by \(429\)
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
We’ve made it to Row Echelon Form. From here, we see that
Unfortunately, we can’t read the solutions off from this matrix – we need Reduced Row Echelon Form for that.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
We’re still going to try to put off fractions until we are forced into them.
This might require changing the values of our pivot entries, but none of our zeroes should be changed.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & -1 & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & 2 & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & 16 & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & -18 & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-18} & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{-18} & -74\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_4 \leftarrow R_4 + 6R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{red}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-13}} & \color{darkorange}{-11} & \color{red}{16} & 47\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow 3R_3 + \left(-16\right)R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{red}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{darkorange}{-4} & \color{darkorange}{-1} & \color{red}{2} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2 \leftarrow 3R_2 + \left(-2\right)R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{red}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{darkorange}{2} & \color{darkorange}{-2} & \color{darkorange}{3} & \color{red}{-1} & -1\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1 \leftarrow 3R_1 + R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{darkorange}{9} & \color{red}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Let’s begin from the column just to the left of the augmenting line, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{darkorange}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{red}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{darkorange}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{darkorange}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{darkorange}{-33} & \color{blue}{0} & -67\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow R_3 + 33R_4} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{red}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{-3} & \color{blue}{0} & -5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2 \leftarrow R_2 + 3R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{red}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{9} & \color{blue}{0} & 10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1\leftarrow R_1 + \left(-9\right)R_4\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{red}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll move back to the fourth column, where we’ll
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{darkorange}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{darkorange}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column, where we
Before we do that, the non-zero entries in the third row are large but they’re both divisible by \(13\), so let’s scale that row.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-39}} & \color{blue}{0} & \color{blue}{0} & 65\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow \frac{1}{13}R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column, where we
Before we do that, the non-zero entries in the third row are large but they’re both divisible by \(13\), so let’s scale that row.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column, where we
Before we do that, the non-zero entries in the third row are large but they’re both divisible by \(13\), so let’s scale that row.
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{-12} & \color{blue}{0} & \color{blue}{0} & 7\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2\leftarrow R_2 + \left(-4\right)R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{red}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column, where we
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column, where we
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{-6} & \color{blue}{0} & \color{blue}{0} & -26\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1 \leftarrow R_1 + \left(-2\right)R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{red}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Next, we move back again to the third column, where we
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{darkorange}{6} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Continuing on, we move back to the second column,
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{red}{6} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Continuing on, we move back to the second column, where we
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{red}{6} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -36\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1 \leftarrow R_1 + \left(-2\right)R_2} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{red}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Continuing on, we move back to the second column, where we
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_1\leftarrow \frac{1}{3}R_1\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{3}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_2 \leftarrow \frac{1}{3}R_2\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{-3}} & \color{blue}{0} & \color{blue}{0} & 5\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_3 \leftarrow \left(\frac{-1}{3}\right)R_3\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{3}} & 13 \end{array}\right] \substack{R_5\leftarrow \frac{1}{3}R_5\\ \longrightarrow} \left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & 13/3 \end{array}\right]\]
Now we’ll scale each row to obtain a pivot entry of \(1\) and solve the system
\[\left[\begin{array}{rrrrr|r} \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -10/3\\ \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & -13/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & \color{blue}{0} & -5/3\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & \color{blue}{0} & 4\\ \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{0} & \color{blue}{\boxed{1}} & 13/3 \end{array}\right]\]
Finally, after all of that, we’ve discovered the solution to the system…
\[x_1 = \frac{-10}{3},~~~x_2 = \frac{-13}{3},~~~x_3 = \frac{-5}{3},~~~x_4 = 4,~~~x_5 = \frac{13}{3}\]
Comments
Obtaining Row Echelon Form: Start from the leftmost column, use the pivot in the top-left position to “zero-out” the entries below the pivot, move to the second column and do the same, keep working from the top-left to bottom-right of the augmented coefficient matrix.
\(\bigstar\) The best pivots are \(1\)’s because they are easy to use – scale or swap rows to put a \(1\) in the pivot position if possible, but it’s probably not worth doing if it forces you to deal with fractions.
Obtaining Reduced Row Echelon Form: Start with the rightmost pivot and use it to “zero-out” the entries above it, move to the next pivot towards the “northwest” and do the same, continue moving from the bottom-right to top-left of the augmented coefficient matrix.
Unfortunately, the only path to comfort here is with practice.