MAT 350: Linear Combinations

Dr. Gilbert

August 8, 2025

Warm-Up Problems

  1. Let \(\vec{v} = \begin{bmatrix} 2\\ -1\\ 0\\ 4\end{bmatrix}\) Compute \(3\vec{v}\) and \(-2\vec{v}\).

  2. Let \(\vec{u} = \begin{bmatrix} 4\\ 0\\ -2\end{bmatrix}\) and \(\vec{v} = \begin{bmatrix} -1\\ 3\\ 8\end{bmatrix}\) and compute \(\vec{u} + \vec{v}\).

  3. Let \(\vec{u} = \begin{bmatrix} 1\\ 2\end{bmatrix}\) and \(\vec{v} = \begin{bmatrix} 3\\ -1\end{bmatrix}\) and compute \(2\vec{u} + 3\vec{v}\).

  4. Let \(\vec{v_1} = \begin{bmatrix} 1\\ 0\\ -1\\ 1\end{bmatrix}\), \(\vec{v_2} = \begin{bmatrix} 0\\ -2\\ 0\\ 3\end{bmatrix}\), and \(\vec{v_3} = \begin{bmatrix} 2\\ 0\\ 0\\ 4\end{bmatrix}\). Construct the vector \(\vec{w}\) if \(\vec{w} = 2\vec{v_1} - 3\vec{v_2} + \vec{v_3}\).

Reminders and Today’s Goal

  • Vectors encode both a direction and magnitude

  • We can multiply vectors by scalars – in this case, each element is multiplied by the scalar

    • Scalar multiplication stretches, shrinks, or reflects a vector but does not change its directionality
  • We can add and subtract vectors of the same size

    • Vector addition is done head-to-tail
  • We can move throughout space by scaling and summing vectors together

Goals for Today: Define what is meant by the notion of a linear combination of vectors, identify whether or not a vector can be written as a linear combination of a set of other vectors, and connect linear combinations to what we’ve already learned about linear systems and matrix equations.

Linear Combinations and Vector Equations

  • Many important properties of linear systems can be described through the lens of vectors.

    • For example, a solution to a linear system in \(n\) variables is a vector with \(n\) components.
  • We encountered vectors and vector operations earlier this semester and the warm-up problems have provided you a reminder of the most important operations we’ll encounter today…

    • scalar multiplication and addition between vectors.

Linear Combinations of Vectors

The concept of a linear combination will be extremely important to us in linear algebra. . . .

Definition (Linear Combination of Vectors): The vector \(\vec{y}\) defined by

\[\vec{y} = c_1\vec{v_1} + c_2\vec{v_2} + \cdots + c_p\vec{v_p}\]

is a linear combination of the vectors \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\) with weights \(c_1,~c_2,~\cdots,~c_p\).


Example: Let \(\vec{v_1} = \begin{bmatrix} 1\\ 2\\ -1\end{bmatrix}\), \(\vec{v_2} = \begin{bmatrix} 0\\ -3\\ 1\end{bmatrix}\) and \(\vec{v_3} = \begin{bmatrix} -4\\ 1\\ 2\end{bmatrix}\) be vectors. Compute the linear combination \(c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3}\) where \(c_1 = -2\), \(c_2 = 4\), and \(c_3 = 5\).

Vector Equations

The definition of a linear combination leads naturally to the definition of a vector equation.

Definition (Vector Equation): A vector equation is an equation of the form

\[x_1\vec{a_1} + x_2\vec{a_2} + \cdots + x_n\vec{a_n} = \vec{b}\]

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 3\\ 1\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} -3\\ 2\\ 1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\). Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

The vector equation is equivalent to the matrix equation

\[\begin{bmatrix} 1 & -3\\ 3 & 2\\ 1 & 1\end{bmatrix}\begin{bmatrix} x_1\\ x_1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\]

Because of this, we can solve the vector equation in the same way that we solve the matrix equation…

…by row-reducing an augmented matrix

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] \end{align*}\]

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] &\substack{R_2 \leftarrow R_2 + (-3R_1)\\ R_3 \leftarrow R_3 + (-1R_1)\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 11 & 44\\ 0 & 2 & 8\end{array}\right] \end{align*}\]

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] &\substack{R_2 \leftarrow R_2 + (-3R_1)\\ R_3 \leftarrow R_3 + (-1R_1)\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 11 & 44\\ 0 & 2 & 8\end{array}\right]\\ &\substack{R_2 \leftarrow (1/11)R_2\\ R_3 \leftarrow (1/2)R_3\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 1 & 4\\ 0 & 1 & 4\end{array}\right] \end{align*}\]

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] &\substack{R_2 \leftarrow R_2 + (-3R_1)\\ R_3 \leftarrow R_3 + (-1R_1)\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 11 & 44\\ 0 & 2 & 8\end{array}\right]\\ &\substack{R_2 \leftarrow (1/11)R_2\\ R_3 \leftarrow (1/2)R_3\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 1 & 4\\ 0 & 1 & 4\end{array}\right]\\ &\substack{R_3 \leftarrow R_3 + (-1R_2)\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 1 & 4\\ 0 & 0 & 0\end{array}\right] \end{align*}\]

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] &\sim \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 1 & 4\\ 0 & 0 & 0\end{array}\right] \end{align*}\]

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] &\sim \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 1 & 4\\ 0 & 0 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow R_1 + (3R_2)\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 0 & -3\\ 0 & 1 & 4\\ 0 & 0 & 0\end{array}\right] \end{align*}\]

Solving a Vector Equation

Example: Determine whether the vector equation \(x_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + x_2\begin{bmatrix} -3\\ 2\\ 1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) has solutions (and, if so, what those solutions are).

\[\begin{align*} \left[\begin{array}{rr|r} 1 & -3 & -15\\ 3 & 2 & -1\\ 1 & -1 & -7\end{array}\right] &\sim \left[\begin{array}{rr|r} 1 & -3 & -15\\ 0 & 1 & 4\\ 0 & 0 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow R_1 + (3R_2)\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 0 & -3\\ 0 & 1 & 4\\ 0 & 0 & 0\end{array}\right] \end{align*}\]



The reduced-row-echelon matrix above suggests that \(\boxed{~\displaystyle{x_1 = -3 \text{ and } x_2 = 4}~}\) \(_\blacktriangledown\)

Equivalencies of Vector Equations, Matrix Equations, and Linear Systems

In solving the previous example, we noted that the vector equation

\[x_1\vec{a_1} + x_2\vec{a_2} + \cdots + x_n\vec{a_n} = \vec{b}\]

has the same solution set as the augmented coefficient matrix

\[\left[\begin{array}{cccc|c}\vec{a_1} & \vec{a_2} & \cdots & \vec{a_n} & \vec{b}\end{array}\right]\]

That is, the augmented coefficient matrix whose columns are the vectors \(\vec{a_i}\).

Equivalencies (Cont’d)

This means that vector equations are not new.

For any given vector equation, there is a corresponding…

  • augmented coefficient matrix
  • matrix equation
  • linear system

The tools we’ve used to investigate and find solutions in those scenarios remain directly applicable again here.

Equivalencies (Cont’d)

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{a_3} = \begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\).

The vector equation

\[x_1 \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix} + x_2 \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix} + x_3\begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\]

Equivalencies (Cont’d)

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{a_3} = \begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\).

The vector equation

\[x_1 \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix} + x_2 \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix} + x_3\begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\]

is equivalent to the matrix equation

\[\begin{bmatrix} 1 & 3 & 0\\ 0 & 1 & 2\\ -2 & 1 & -2\\ 3 & 0 & -1\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\]

Equivalencies (Cont’d)

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{a_3} = \begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\).

The matrix equation

\[\begin{bmatrix} 1 & 3 & 0\\ 0 & 1 & 2\\ -2 & 1 & -2\\ 3 & 0 & -1\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\]

Equivalencies (Cont’d)

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{a_3} = \begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\).

The matrix equation

\[\begin{bmatrix} 1 & 3 & 0\\ 0 & 1 & 2\\ -2 & 1 & -2\\ 3 & 0 & -1\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ x_3\end{bmatrix} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\]

is equivalent to the augmented coefficient matrix

\[\left[\begin{array}{ccc|c} 1 & 3 & 0 & 1\\ 0 & 1 & 2 & 1\\ -2 & 1 & -2 & 2\\ 3 & 0 & 1 & -2\end{array}\right]\]

Equivalencies (Cont’d)

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{a_3} = \begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\).

The augmented coefficient matrix

\[\left[\begin{array}{ccc|c} 1 & 3 & 0 & 1\\ 0 & 1 & 2 & 1\\ -2 & 1 & -2 & 2\\ 3 & 0 & 1 & -2\end{array}\right]\]

Equivalencies (Cont’d)

Example: Consider the vectors \(\vec{a_1} = \begin{bmatrix} 1\\ 0\\ -2\\ 3\end{bmatrix}\), \(\vec{a_2} = \begin{bmatrix} 3\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{a_3} = \begin{bmatrix} 0\\ 2\\ -2\\ -1\end{bmatrix}\), and \(\vec{b} = \begin{bmatrix} 1\\ 1\\ 2\\ -2\end{bmatrix}\).

The augmented coefficient matrix

\[\left[\begin{array}{ccc|c} 1 & 3 & 0 & 1\\ 0 & 1 & 2 & 1\\ -2 & 1 & -2 & 2\\ 3 & 0 & 1 & -2\end{array}\right]\]

is equivalent to the system

\[\left\{\begin{array}{rcr} x_1 + 3x_2 & = & 1\\ x_2 + 2x_3 & = & 1\\ -2x_1 + x_2 - 2x_3 & = & 2\\ 3x_1 + x_3 & = & -2\end{array}\right.\]

Recap of Question Contexts

  • We’ve just highlighted that vector equations, matrix equations, and linear systems are all in correspondence with one another.
  • While they each arise naturally from different contexts, the tools and approaches for investigating and solving them are the same.
  • Additionally, we can always convert from one type into any other that we prefer.

It’s worth taking a moment to recap the different types of equations and contexts we’ve encountered.

We’ll do that next, with a particular focus on the types of questions we are asking when we write an equation of a particular type.

Recap of Question Contexts

Vector Equations: \(x_1\vec{v_1} + x_2\vec{v_2} + \cdots x_p\vec{v_p} = \vec{y}\)

  • Question: Can I arrive at the vector \(\vec{y}\) by starting from the origin (\(\vec{0}\)) and taking steps only in the directions of \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\)?

Recap of Question Contexts

Matrix Equations: \(A\vec{x} = \vec{b}\)

  • Question: Assuming \(A\) is an \(m\times n\) matrix, is there a vector \(\vec{x}\in\mathbb{R}^n\) such that \(\vec{x}\) gets mapped to the vector \(\vec{b}\in \mathbb{R}^m\) when we multiply \(\vec{x}\) on the left by the matrix \(A\)?

Alternatively, we could let \(f: \mathbb{R}^n\to \mathbb{R}^m\) be a function such that \(f\left(\vec{x}\right) = A\vec{x}\).

  • From this lens, we want to know whether there is some \(\vec{x}\) in the domain of \(f\) such that \(f\left(\vec{x}\right) = \vec{b}\).

    • This is a question you likely asked often in a PreCalculus course (just with real-valued functions from \(\mathbb{R}\) to \(\mathbb{R}\) instead of the higher dimensional spaces we are working in now).

Recap of Question Contexts

Linear Systems: \(\left\{\begin{array}{rcr} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & b_1\\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = & b_2\\ & \vdots & \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & = & b_m\end{array}\right.\)

  • Question: Are there scalars \(x_1,~x_2,~\cdots,~x_n\) that make all \(m\) of the linear equations in the system true at the same time?

Examples to Try: Example #1

Example: For the vectors \(\vec{u} = \left[\begin{array}{c}5\\ -3\end{array}\right]\) and \(\vec{v} = \left[\begin{array}{c} -2\\ 1\end{array}\right]\), compute \(\vec{u} + \vec{v}\) and \(\vec{u} - 2\vec{v}\). Draw the vectors \(\vec{u}\), \(\vec{v}\) and the resultant vectors in the plane.

Examples to Try: Example #2

Example: Let \(\vec{u} = \begin{bmatrix} 1\\ 2\end{bmatrix}\), \(\vec{v} = \begin{bmatrix} 3\\ -1\end{bmatrix}\), and \(\vec{w} = \begin{bmatrix} 9\\ 1\end{bmatrix}\). Can \(\vec{w}\) be written as a linear combination of \(\vec{u}\) and \(\vec{v}\)? In order words, do there exist scalars \(c_1\) and \(c_2\) such that \(c_1\vec{u} + c_2\vec{v} = \vec{w}\)?

Examples to Try: Example #3

Example: Find and describe all solutions to the vector equation below, if solutions exist.

\[x_1\begin{bmatrix}1\\ 0\\ 1\\ 0\end{bmatrix} + x_2\begin{bmatrix} 0\\ 1\\ 0\\ 1\end{bmatrix} + x_3\begin{bmatrix} 1\\ 1\\ 1\\ 1\end{bmatrix} = \begin{bmatrix} 3\\ 2\\ 3\\ 2\end{bmatrix}\]

Examples to Try: Example #4

Example: Given the vectors \(\vec{u_1} = \begin{bmatrix} 1\\ 1\\ 0\\ 0\\ 0\end{bmatrix}\), \(\vec{u_2} - \begin{bmatrix} 0\\ 0\\ 1\\ 1\\ 0\end{bmatrix}\), \(\vec{u_3} = \begin{bmatrix} 0\\ 0\\ 0\\ 1\\ 1\end{bmatrix}\), and \(\vec{y} = \begin{bmatrix} 2\\ 2\\ 3\\ 5\\ 2\end{bmatrix}\), find weights that allow you to write \(\vec{y}\) as a linear combination of the vectors \(\vec{u_1}\) , \(\vec{u_2}\), and \(\vec{u_3}\). If such weights do not exist, provide justification for why they do not.

Examples to Try: Example #5

Example: Write a system of linear equations and an augmented coefficient matrix which is equivalent to the vector equation

\[x_1\left[\begin{array}{c}3\\ 0\\ 1\end{array}\right] + x_2\left[\begin{array}{c}0\\ 1\\ 1\end{array}\right] + x_3\left[\begin{array}{c}1\\ 1\\ -2\end{array}\right] = \left[\begin{array}{c}3\\ -5\\ 4\end{array}\right]\]

Use a series of elementary row operations to solve the system.

Examples to Try: Example #6

Try It! 6: Write a vector equation that is equivalent to the system of equations \(\left\{\begin{array}{rcr} 5x_1 + 2x_2 - 4x_3 & = & 20\\ x_1 + 2x_2 + x_3 & = & 6\\ -2x_1 - x_2 + 3x_3 & = & 1\end{array}\right.\).

Use an augmented coefficient matrix and a series of elementary row operations to solve the system and corresponding vector equation.

Examples to Try: Example #7

Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{c} 1\\ 2\\ 5\\ -5\end{array}\right]\) is a linear combination of the vectors \(\vec{v_1} = \left[\begin{array}{c}1\\ 1\\ 0\\ 0\end{array}\right]\), \(\vec{v_2} = \left[\begin{array}{c}0\\ 1\\ 2\\ -2\end{array}\right]\), and \(\vec{v_3} = \left[\begin{array}{c}0\\ 0\\ -1\\ 1\end{array}\right]\).

Summary

To be added…

Homework




\[\Huge{\text{Start Homework 4}}\] \[\Huge{\text{on MyOpenMath}}\]

Next Time…




\(\Huge{\text{Matrix Multiplication and}}\)

\(\Huge{\text{Linear Combinations}}\)