MAT 350: Row Reduction Workshop

Dr. Gilbert

September 24, 2025

Warm-Up Problems

Example: Consider the following augmented coefficient matrices in their reduced row echelon form (RREF). In each case, determine the number of solutions to the underlying linear system, write those solutions using parametric vector form, and describe the geometry of the solution space (point, line, plane, etc.).

\[i)~~~\left[\begin{array}{rr|r} 1 & 0 & 2\\ 0 & 1 & -1\\ 0 & 0 & 1\end{array}\right]~~~~~~ii)~~~\left[\begin{array}{rrr|r} 1 & 0 & 4 & 7\\ 0 & 1 & -2 & 1\end{array}\right]~~~~~~iii)~~~\left[\begin{array}{rrrrr|r} 1 & -3 & 4 & 0 & 2 & 3\\ 0 & 0 & 0 & 1 & 6 & -4\\ 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]\]


\[iv)~~~\left[\begin{array}{rrrr|r} 1 & 0 & 0 & 0 & -3\\ 0 & 1 & 0 & 0 & 5\\ 0 & 0 & 1 & 0 & 8\\ 0 & 0 & 0 & 1 & -1\end{array}\right]~~~~~~v)~~~\left[\begin{array}{rrrr|r} 1 & 0 & 2 & -1 & 4\\ 0 & 1 & 3 & 5 & -2\end{array}\right]\]

Reminders and Today’s Goal

  • The purpose of today’s class meeting is simple – build confidence with row reduction.

  • As mentioned previously, you’ll have a row reduction Gateway Exam in MAT350 worth 15% of your overall course grade that you’ll need to pass before the end of the semester.

  • You’ll be able to retake the Gateway Exam multiple times to show mastery.

    • Limits: Once per week until the Thanksgiving Break and then twice per week afterwards
  • Each Gateway Exam will consist of four matrices for you to reduce within a strict 20-minute time limit.

  • You’ll need to correctly reduce at least three of the matrices to their reduced row echelon form in order to pass.

First Attempt: Your first attempt at the Gateway Exam will take place at the end of this class meeting. Prior to that, we’ll take time to practice.

Completed Examples: Example #1

Example: Reduce the matrix below to its corresponding reduced row echeclon form.

\[A = \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix}\]

\[\begin{align} \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix} \end{align}\]

Completed Examples: Example #1

Example: Reduce the matrix below to its corresponding reduced row echeclon form.

\[A = \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix}\]

\[\begin{align} \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix} &\stackrel{R_2 \leftarrow R_2 + 3R_1}{\longrightarrow} \begin{bmatrix} 1 & 4\\ 0 & 20\end{bmatrix} \end{align}\]

Completed Examples: Example #1

Example: Reduce the matrix below to its corresponding reduced row echeclon form.

\[A = \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix}\]

\[\begin{align} \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix} &\stackrel{R_2 \leftarrow R_2 + 3R_1}{\longrightarrow} \begin{bmatrix} 1 & 4\\ 0 & 20\end{bmatrix}\\ &\stackrel{R_2 \leftarrow \frac{1}{20}R_2}{\longrightarrow} \begin{bmatrix} 1 & 4\\ 0 & 1\end{bmatrix} \end{align}\]

Completed Examples: Example #1

Example: Reduce the matrix below to its corresponding reduced row echeclon form.

\[A = \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix}\]

\[\begin{align} \begin{bmatrix} 1 & 4\\ -3 & 8\end{bmatrix} &\stackrel{R_2 \leftarrow R_2 + 3R_1}{\longrightarrow} \begin{bmatrix} 1 & 4\\ 0 & 20\end{bmatrix}\\ &\stackrel{R_2 \leftarrow \frac{1}{20}R_2}{\longrightarrow} \begin{bmatrix} 1 & 4\\ 0 & 1\end{bmatrix}\\ &\stackrel{R_1 \leftarrow R_1 + (-4)R_2}{\longrightarrow}\begin{bmatrix} 1 & 0\\ 0 & 1\end{bmatrix}~~\blacktriangledown \end{align}\]

This was a square matrix with a pivot in every row and every column.

Completed Examples: Example #2

Example: \(C = \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} \end{align}\]

Completed Examples: Example #2

Example: \(C = \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} &\stackrel{R_2 \leftarrow R_2 + (-2)R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} \end{align}\]

Completed Examples: Example #2

Example: \(C = \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} &\stackrel{R_2 \leftarrow R_2 + (-2)R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} \\ &\stackrel{R_3 \leftrightarrow R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 0 & 1 & 0 & -1 & -2\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \end{align}\]

Completed Examples: Example #2

Example: \(C = \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 2 & 4 & 6 & 8 & 10\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} &\stackrel{R_2 \leftarrow R_2 + (-2)R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 0 & 0 & 0 & 0 & 0\\ 0 & 1 & 0 & -1 & -2 \end{bmatrix} \\ &\stackrel{R_3 \leftrightarrow R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & 3 & 4 & 5\\ 0 & 1 & 0 & -1 & -2\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \\ &\stackrel{R_1 \leftarrow R_1 + (-2)R_2}{\longrightarrow} \begin{bmatrix} 1 & 0 & 3 & 6 & 9\\ 0 & 1 & 0 & -1 & -2\\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} ~~\blacktriangledown \end{align}\]

This was a rectangular matrix with a pivots missing in both rows and columns.

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\stackrel{R_1 \leftarrow \frac{1}{2} R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\stackrel{R_1 \leftarrow \frac{1}{2} R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} \\ &\stackrel{R_2 \leftarrow R_2 + (-1)R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 3 & 9 & 1 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\stackrel{R_1 \leftarrow \frac{1}{2} R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} \\ &\stackrel{R_2 \leftarrow R_2 + (-1)R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 3 & 9 & 1 \end{bmatrix} \\ &\stackrel{R_3 \leftarrow R_3 + (-3)R_1}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\sim \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\sim \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow R_3 + (-3)R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & -2 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\sim \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow R_3 + (-3)R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & -2 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow \left(-\frac{1}{2}\right) R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\sim \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow R_3 + (-3)R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & -2 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow \left(-\frac{1}{2}\right) R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{bmatrix} \end{align}\]

\[\begin{align} &\stackrel{R_2 \leftarrow R_2 + (-2)R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\sim \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow R_3 + (-3)R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & -2 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow \left(-\frac{1}{2}\right) R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{bmatrix} \end{align}\]

\[\begin{align} &\stackrel{R_2 \leftarrow R_2 + (-2)R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\\ &\stackrel{R_1 \leftarrow R_1 + R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \end{align}\]

Completed Examples: Example #3

Example: \(B = \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1\end{bmatrix}\)

\[\begin{align} \begin{bmatrix} 2 & 4 & -2\\ 1 & 3 & 1\\ 3 & 9 & 1 \end{bmatrix} &\sim \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 3 & 4 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow R_3 + (-3)R_2}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & -2 \end{bmatrix}\\ &\stackrel{R_3 \leftarrow \left(-\frac{1}{2}\right) R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 2\\ 0 & 0 & 1 \end{bmatrix} \end{align}\]

\[\begin{align} &\stackrel{R_2 \leftarrow R_2 + (-2)R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & -1\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}\\ &\stackrel{R_1 \leftarrow R_1 + R_3}{\longrightarrow} \begin{bmatrix} 1 & 2 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \\ &\stackrel{R_1 \leftarrow R_1 + (-2)R_2}{\longrightarrow} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix}~~\blacktriangledown \end{align}\]

Another square matrix with pivots in every row and column.

Examples to Try

  • The following slides include examples for you to try on your own.
  • The groups are loosely arranged by difficulty of the row reduction tasks.
  • For each of the presented matrices, perform row reduction operations to convert the matrix into its equivalent reduced row echelon form.

Examples to Try: Group #1

  1. \(A_1 = \begin{bmatrix}1 & 2\\ 0 & 3\end{bmatrix}\)
  2. \(A_2 = \begin{bmatrix} 1 & 0\\ 0 & 1\\ 2 & 3\end{bmatrix}\)
  3. \(A_3 = \begin{bmatrix} 1 & 2 & 3\\ 0 & 1 & 4\end{bmatrix}\)

Examples to Try: Group #2

  1. \(B_1 = \begin{bmatrix} 2 & 4 & -2\\ -1 & -2 & 1\\ 1 & 1 & 0\end{bmatrix}\)
  2. \(B_2 = \begin{bmatrix} 1 & 2 & 1 & 0\\ 2 & 4 & 3 & 1\\ 1 & 1 & 2 & 3\end{bmatrix}\)
  3. \(B_3 = \begin{bmatrix} 1 & 2 & 3\\ 0 & 1 & 4\\ 0 & 0 & 1\\ 0 & 0 & 0\end{bmatrix}\)

Examples to Try: Group #3

  1. \(C_1 = \begin{bmatrix} 0 & 2 & 4 & 6\\ 1 & 3 & 1 & 5\\ 2 & 6 & 2 & 10\\ 3 & 1 & 1 & 4\end{bmatrix}\)
  2. \(C_2 = \begin{bmatrix} 1 & 1 & 1\\ 2 & 2 & 2\\ 1 & 0 & 1\\ 0 & 1 & 2\\ 3 & 3 & 3\end{bmatrix}\)
  3. \(C_3 = \begin{bmatrix} 1 & 2 & 0 & 3 & 1\\ 2 & 4 & -1 & 6 & 2\\ -1 & -2 & 1 & -3 & 0\\ 0 & 0 & 2 & 1 & 3\end{bmatrix}\)

Homework




\[\Huge{\text{Finish Homework 3}}\] \[\Huge{\text{on MyOpenMath}}\]

Next Time…




\(\Huge{\text{Vectors and Linear Combinations}}\)