August 16, 2025
Complete the following warm-up problems to re-familiarize yourself with concepts we’ll be leveraging today.
Example: Consider the matrix \(A = \begin{bmatrix} 3 & 0\\ 0 & -1\end{bmatrix}\), along with the vectors \(\vec{e_1} = \begin{bmatrix} 1\\ 0\end{bmatrix}\) and \(\vec{e_2} = \begin{bmatrix} 0\\ 1\end{bmatrix}\). Calculate \(A\vec{e_1}\) and \(A\vec{e_2}\).
Example: Consider the matrix \(B = \begin{bmatrix} 1 & 2\\ 2 & 1\end{bmatrix}\), along with the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 1\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 1\end{bmatrix}\). Compute \(B\vec{v_1}\) and \(B\vec{v_2}\).
Consider the matrices \(A = \begin{bmatrix} 3 & 0\\ 0 & -1\end{bmatrix}\) and the matrix \(B = \begin{bmatrix} 1 & 2\\ 2 & 1\end{bmatrix}\).
In particular, we’re interested in the parallelograms resulting from the vectors \(A\vec{e_1}\) and \(A\vec{e_2}\) as well as the vectors \(B\vec{v_1}\) and \(B\vec{v_2}\).
The matrix \(A = \begin{bmatrix} 3 & 0\\ 0 & -1\end{bmatrix}\) stretches vectors in the direction of \(\vec{e_1}\) by \(3\) and flips vectors in the opposite direction of \(\vec{e_2}\).
Similarly, the matrix \(B = \begin{bmatrix} 1 & 2\\ 2 & 1\end{bmatrix}\) stretches vectors in the \(\vec{v_1}\) direction by \(3\) and flips vectors in the opposite direction of \(\vec{v_2}\).
Is the observed relationship between the matrices \(A\) and \(B\) coincidence?
Is it luck?
Given some generic matrix like \(B\), can we obtain a convenient matrix like \(A\) which has analogous geometric effects to \(B\), but where those geometric effects are easily identified?
\[\begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n}\end{bmatrix}\begin{bmatrix} x_1\\ x_2\\ \vdots\\ x_n\end{bmatrix} = \begin{bmatrix} x_1\vec{a_1} + x_2\vec{a_2} + \cdots + x_n\vec{a_n}\end{bmatrix}\]
\[B\begin{bmatrix} \vec{a_1} & \vec{a_2} & \cdots & \vec{a_n}\end{bmatrix} = \begin{bmatrix} B\vec{a_1} & B\vec{a_2} & \cdots & B\vec{a_n}\end{bmatrix}\]
The non-zero vector \(\vec{v}\) is an eigenvector of the matrix \(A\) if \(A\vec{v} = \lambda \vec{v}\) for some \(\lambda\).
If a matrix has \(n\) distinct eigenvalues, then it is possible to find a basis for \(\mathbb{R}^n\) consisting of eigenvectors (an eigenbasis).
Goals for Today: After today’s discussion, you should be able to
We’re about to introduce the notion of diagonalization of a matrix.
We’ll alternate between the following two scenarios.
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Construct the matrix \(P = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\), and consider the product \(AP\)…
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Construct the matrix \(P = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\), and consider the product \(AP\)…
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
Consider the matrix \(P = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\) and compute \(AP\)…
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[AP = A\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[AP = A\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = A\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[AP = A\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix} = \begin{bmatrix} A\vec{v_1} & A\vec{v_2} & \cdots & A\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = A\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[AP = A\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix} = \begin{bmatrix} A\vec{v_1} & A\vec{v_2} & \cdots & A\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = A\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix} = \begin{bmatrix} A\begin{bmatrix} 1\\ 1\end{bmatrix} & A\begin{bmatrix} 2\\ -1\end{bmatrix}\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[AP = A\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix} = \begin{bmatrix} A\vec{v_1} & A\vec{v_2} & \cdots & A\vec{v_n}\end{bmatrix}\]
\[= \begin{bmatrix}\lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = A\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix} = \begin{bmatrix} A\begin{bmatrix} 1\\ 1\end{bmatrix} & A\begin{bmatrix} 2\\ -1\end{bmatrix}\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[AP = A\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix} = \begin{bmatrix} A\vec{v_1} & A\vec{v_2} & \cdots & A\vec{v_n}\end{bmatrix}\]
\[= \begin{bmatrix}\lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = A\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix} = \begin{bmatrix} A\begin{bmatrix} 1\\ 1\end{bmatrix} & A\begin{bmatrix} 2\\ -1\end{bmatrix}\end{bmatrix} = \begin{bmatrix}3\begin{bmatrix} 1\\ 1\end{bmatrix} & -6\begin{bmatrix}2\\ -1\end{bmatrix}\end{bmatrix}\]
\[= \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Consider the matrix \(P = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\) again, along with the diagonal matrix \(D\), whose entries are the eigenvalues of \(A\). Compute the product \(PD\)
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Consider the matrix \(P = \begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\) again, along with the diagonal matrix \(D\), whose entries are the eigenvalues of \(A\). Compute the product \(PD\)
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
Consider the matrix \(P = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\) and the diagonal matrix \(D = \begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\). Compute \(PD\)…
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[PD = \begin{bmatrix}\vec{v_1} & \vec{v_2} & \cdots & \vec{v_n}\end{bmatrix}\begin{bmatrix}\lambda_1 & 0 & \cdots & 0\\ 0 & \lambda_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & \lambda_n\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
Consider the matrix \(P = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\) and the diagonal matrix \(D = \begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\). Compute \(PD\)…
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[PD = \begin{bmatrix} \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
Consider the matrix \(P = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\) and the diagonal matrix \(D = \begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\). Compute \(PD\)…
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[PD = \begin{bmatrix} \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[PD = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
\[PD = \begin{bmatrix} \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[PD = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix} = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[AP = \begin{bmatrix} \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix} = PD\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[PD = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix} = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix}\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[AP = \begin{bmatrix} \lambda_1\vec{v_1} & \lambda_2\vec{v_2} & \cdots & \lambda_n\vec{v_n}\end{bmatrix} = PD\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix} = PD\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[\begin{align} AP &= PD \end{align}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix} = PD\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[\begin{align} AP &= PD\\ \implies \left(AP\right)P^{-1} &= \left(PD\right)P^{-1} \end{align}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix} = PD\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[\begin{align} AP &= PD\\ \implies \left(AP\right)P^{-1} &= \left(PD\right)P^{-1}\\ \implies A\left(PP^{-1}\right) &= PDP^{-1} \end{align}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix} = PD\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[\begin{align} AP &= PD\\ \implies \left(AP\right)P^{-1} &= \left(PD\right)P^{-1}\\ \implies A\left(PP^{-1}\right) &= PDP^{-1}\\ \implies A &= PDP^{-1} \end{align}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix} = PD\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[A = PDP^{-1}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
\[AP = \begin{bmatrix} 3 & -12\\ 3 & 6\end{bmatrix} = PD\]
General Case: Suppose we have an \(n\times n\) matrix \(A\) and a corresponding basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with corresponding eigenvalues \(\lambda_1,~\lambda_2,~\cdots,~\lambda_n\).
Notice that
\[A = PDP^{-1}\]
Example: Suppose we have the \(2\times 2\) matrix \(A = \begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix}\) with eigenbasis \(\left\{\begin{bmatrix} 1\\ 1\end{bmatrix}, \begin{bmatrix} 2\\ -1\end{bmatrix}\right\}\) and corresponding eigenvalues \(\lambda_1 = 3\) and \(\lambda_2 = 6\).
So,
\[\begin{bmatrix} -3 & 6\\ 3 & 0\end{bmatrix} = \begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\left(\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\right)^{-1}\]
Summary (Diagonalization of \(A\)): If \(A\) is an \(n\times n\) matrix and there exists a basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with associated eigenvalues \(\lambda_1,~\lambda_2,~ \cdots,~lambda_n\), then we can write \(A = PDP^{-1}\) where the columns of the matrix \(P\) are the eigenvectors and \(D\) is a diagonal matrix with the corresponding eigenvalues along its diagonal.
Punchline: To connect back to the images we began this notebook with, if the matrix \(A\) is diagonalizable as \(A = PDP^{-1}\), then the effect of multiplying a vector by \(A\), viewed in the basis defined by the columns of \(P\), is the same effect as multiplying by \(D\) with the standard basis.
Example: So when we rewrite the matrix \(A\) as
Summary (Diagonalization of \(A\)): If \(A\) is an \(n\times n\) matrix and there exists a basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with associated eigenvalues \(\lambda_1,~\lambda_2,~ \cdots,~lambda_n\), then we can write \(A = PDP^{-1}\) where the columns of the matrix \(P\) are the eigenvectors and \(D\) is a diagonal matrix with the corresponding eigenvalues along its diagonal.
Punchline: To connect back to the images we began this notebook with, if the matrix \(A\) is diagonalizable as \(A = PDP^{-1}\), then the effect of multiplying a vector by \(A\), viewed in the basis defined by the columns of \(P\), is the same effect as multiplying by \(D\) with the standard basis.
Example: So when we rewrite the matrix \(A\) as
\[\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\left(\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\right)^{-1}\]
Summary (Diagonalization of \(A\)): If \(A\) is an \(n\times n\) matrix and there exists a basis \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_n}\right\}\) for \(\mathbb{R}^n\) consisting of eigenvectors of \(A\) with associated eigenvalues \(\lambda_1,~\lambda_2,~ \cdots,~lambda_n\), then we can write \(A = PDP^{-1}\) where the columns of the matrix \(P\) are the eigenvectors and \(D\) is a diagonal matrix with the corresponding eigenvalues along its diagonal.
Punchline: To connect back to the images we began this notebook with, if the matrix \(A\) is diagonalizable as \(A = PDP^{-1}\), then the effect of multiplying a vector by \(A\), viewed in the basis defined by the columns of \(P\), is the same effect as multiplying by \(D\) with the standard basis.
Example: So when we rewrite the matrix \(A\) as
\[\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\begin{bmatrix} 3 & 0\\ 0 & -6\end{bmatrix}\left(\begin{bmatrix} 1 & 2\\ 1 & -1\end{bmatrix}\right)^{-1}\]
We see that \(A\)
Matrix multiplication is an arduous process because of the number of operations involved.
Often times we are interested in what happens when a matrix repeatedly acts upon a vector though.
I’ll show two strategies for calculating powers of matrices on the next slide.
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1} \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100} \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1} \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right)\\ A^8 &= \left(A^4\right)\left(A^4\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right)\\ A^8 &= \left(A^4\right)\left(A^4\right)\\ A^{16} &= \left(A^8\right)\left(A^8\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right)\\ A^8 &= \left(A^4\right)\left(A^4\right)\\ A^{16} &= \left(A^8\right)\left(A^8\right)\\ A^{32} &= \left(A^{16}\right)\left(A^{16}\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right)\\ A^8 &= \left(A^4\right)\left(A^4\right)\\ A^{16} &= \left(A^8\right)\left(A^8\right)\\ A^{32} &= \left(A^{16}\right)\left(A^{16}\right)\\ A^{64} &= \left(A^{32}\right)\left(A^{32}\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right)\\ A^8 &= \left(A^4\right)\left(A^4\right)\\ A^{16} &= \left(A^8\right)\left(A^8\right)\\ A^{32} &= \left(A^{16}\right)\left(A^{16}\right)\\ A^{64} &= \left(A^{32}\right)\left(A^{32}\right)\\ A^{100} &= \left(A^{64}\right)\left(A^{32}\right)\left(A^4\right) \end{align}\]
Let’s consider the task of trying to compute \(A^{100}\) for some matrix \(A\).
If \(A\) is Diagonalizable…
\[\begin{align} A &= PDP^{-1}\\ \implies A^{100} &= \left(PDP^{-1}\right)^{100}\\ &= \left(PDP^{-1}\right)\left(PDP^{-1}\right)\cdots\left(PDP^{-1}\right)\\ &= PD\left(P^{-1}P\right)D\left(P^{-1}P\right)\cdots \left(P^{-1}P\right)DP^{-1}\\ &= PD^{100}P^{-1} \end{align}\]
Because \(D\) is a diagonal matrix, \(D^{100}\) is obtained by raising its diagonal entries to the \(100^{\text{th}}\) power.
Instead of 100 matrices, we only need to multiply three.
Otherwise…
\[\begin{align} A^2 &= AA\\ A^4 &= \left(A^2\right)\left(A^2\right)\\ A^8 &= \left(A^4\right)\left(A^4\right)\\ A^{16} &= \left(A^8\right)\left(A^8\right)\\ A^{32} &= \left(A^{16}\right)\left(A^{16}\right)\\ A^{64} &= \left(A^{32}\right)\left(A^{32}\right)\\ A^{100} &= \left(A^{64}\right)\left(A^{32}\right)\left(A^4\right) \end{align}\]
Eight matrix multiplications is better than a hundred!
Example 1: Determine whether the following matrices are diagonalizable and, if so, find matrices \(P\) and \(D\) such that \(A = PDP^{-1}\).
\[(i)~~A_1 = \begin{bmatrix} -2 & -2\\ -2 & 1\end{bmatrix}~~~~~(ii)~~A_2 = \begin{bmatrix} -1 & 1\\ -1 & -3\end{bmatrix}\]
\[(iii)~~A_3 = \begin{bmatrix} 1 & 0 & 0\\ 2 & -2 & 0\\ 0 & 1 & 4\end{bmatrix}~~~~~(iv)~~A_4 = \begin{bmatrix} 1 & 2 & 2\\ 2 & 1 & 2\\ 2 & 2 & 1\end{bmatrix}\]
Example 2: Describe the geometric effect that the following matrices have in \(\mathbb{R}^2\).
\[(i)~~A_1 = \begin{bmatrix} 2 & 0 \\ 0 & 2\end{bmatrix}~~~~~(ii)~~A_2 = \begin{bmatrix}4 & 2\\ 0 & 4\end{bmatrix}~~~~~(iii)~~A_3 = \begin{bmatrix} 3 & -6\\ 6 & 3\end{bmatrix}\]
\[(iv)~~A_4 = \begin{bmatrix} 4 & 0\\ 0 & -2\end{bmatrix}~~~~~(v)~~A_5 = \begin{bmatrix} 1 & 3\\ 3 & 1\end{bmatrix}\]
\[\Huge{\text{Optional Homework 12}}\] \[\Huge{\text{on MyOpenMath}}\]
\(\Huge{\text{Discrete Dynamical}}\)
\(\Huge{\text{Systems}}\)