August 14, 2025
Complete the following warm-up problems to re-familiarize yourself with concepts we’ll be leveraging today.
Example: Find the determinant of the matrix \(A = \left[\begin{array}{rrr} 1 & -2 & 3\\ -2 & 4 & 1\\ 0 & 2 & 5\end{array}\right]\).
Example: Note that the matrix \(U = \left[\begin{array}{rrr} 1 & -2 & 3\\ 0 & 2 & 5\\ 0 & 0 & 7\end{array}\right]\) is a row-echelon equivalent matrix to \(A\). I obtained \(U\) with the following two operations: (i) \(R_2 \leftarrow R_2 + 2R_1\), and (ii) swap \(R_2\) and \(R_3\). Find the determinant of \(U\).
Example: Find all of the solutions to the polynomial equation \(-\lambda\left(5 - \lambda\right)\left(2 - \lambda\right)\left(-6 - \lambda\right)^2 = 0\).
A scalar \(\lambda\) is an eigenvalue of \(A\) if \(\left(A - I_n\right)\vec{x} = \vec{0}\) has a non-trivial solution.
A scalar \(\lambda\) is an eigenvalue of \(A\) if \(\begin{bmatrix} A - \lambda I_n & | & \vec{0}\end{bmatrix}\) has a free variable.
\(\bigstar\) A scalar \(\lambda\) is an eigenvalue of \(A\) if the matrix \(\left(A - \lambda I_n\right)\) is not invertible.
A scalar \(\lambda\) is an eigenvalue of \(A\) if \(\text{dim}\left(\text{Nul}\left(A - \lambda I_n\right)\right) > 0\).
If a scalar \(\lambda\) is an eigenvalue of \(A\), then \(\text{Nul}\left(A - \lambda I_n\right)\) is a subspace of \(\mathbb{R}^n\) corresponding to the eigenvalue \(\lambda\).
\(\bigstar\) A matrix \(B\) is not invertible if \(\text{det}\left(B\right) = 0\)
Additionally worth remembering from PreCalculus, if \(p\left(x\right)\) is a polynomial, we solve the equation \(p\left(x\right) = 0\) by factoring.
Goals for Today: After today’s discussion, you should be able to
In our introduction to eigenvectors and eigenvalues discussion, you saw how to check whether a vector was an eigenvector or a scalar was an eigenvalue of a matrix \(A\).
What if we just have a matrix \(A\) and wonder…
For example, what if we wanted to find the eigenvalues corresponding to the matrix \(A = \left[\begin{array}{rr} 1 & 4\\ 3 & 2\end{array}\right]\). Find the bases for the eigenspaces corresponding to the eigenvectors.
Because \(\lambda\) is an eigenvalue of the matrix \(A\) if there exist non-trivial (not \(\vec{0}\)) solutions to the matrix equation \(\left(A - \lambda I\right)\vec{x} = \vec{0}\), we need $(A - I) to be a non-invertible matrix.
Definition (Characteristic Equation): Given an \(n\times n\) matrix \(A\), the characteristic equation corresponding to \(A\) is the equation \(\text{det}\left(A - \lambda I\right) = 0\)
Recall that, if a matrix has a determinant of \(0\), then that matrix is not invertible.
Strategy (Finding Eigenvalues): Given an \(n\times n\) matrix \(A\), there are two steps for finding its eigenvalues.
Example: Find all of the eigenvalues of the matrix \(A = \left[\begin{array}{rr} 1 & 4\\ 3 & 2\end{array}\right]\).
We’ll construct the characteristic equation and solve it to find the eigenvalues.
\[\begin{align*} \det\left(\left[\begin{array}{rr} 1 - \lambda & 4\\ 3 & 2 - \lambda\end{array}\right]\right) &= 0 \end{align*}\]
Example: Find all of the eigenvalues of the matrix \(A = \left[\begin{array}{rr} 1 & 4\\ 3 & 2\end{array}\right]\).
We’ll construct the characteristic equation and solve it to find the eigenvalues.
\[\begin{align*} \det\left(\left[\begin{array}{rr} 1 - \lambda & 4\\ 3 & 2 - \lambda\end{array}\right]\right) &= 0\\ \implies \left(1 - \lambda\right)\left(2 - \lambda\right) - 4\left(3\right) &= 0 \end{align*}\]
Example: Find all of the eigenvalues of the matrix \(A = \left[\begin{array}{rr} 1 & 4\\ 3 & 2\end{array}\right]\).
We’ll construct the characteristic equation and solve it to find the eigenvalues.
\[\begin{align*} \det\left(\left[\begin{array}{rr} 1 - \lambda & 4\\ 3 & 2 - \lambda\end{array}\right]\right) &= 0\\ \implies \left(1 - \lambda\right)\left(2 - \lambda\right) - 4\left(3\right) &= 0\\ \implies \lambda^2 - 3\lambda + 2 - 12 &= 0 \end{align*}\]
Example: Find all of the eigenvalues of the matrix \(A = \left[\begin{array}{rr} 1 & 4\\ 3 & 2\end{array}\right]\).
We’ll construct the characteristic equation and solve it to find the eigenvalues.
\[\begin{align*} \det\left(\left[\begin{array}{rr} 1 - \lambda & 4\\ 3 & 2 - \lambda\end{array}\right]\right) &= 0\\ \implies \left(1 - \lambda\right)\left(2 - \lambda\right) - 4\left(3\right) &= 0\\ \implies \lambda^2 - 3\lambda + 2 - 12 &= 0\\ \implies \lambda^2 -3\lambda -10 &= 0 \end{align*}\]
Example: Find all of the eigenvalues of the matrix \(A = \left[\begin{array}{rr} 1 & 4\\ 3 & 2\end{array}\right]\).
We’ll construct the characteristic equation and solve it to find the eigenvalues.
\[\begin{align*} \det\left(\left[\begin{array}{rr} 1 - \lambda & 4\\ 3 & 2 - \lambda\end{array}\right]\right) &= 0\\ \implies \left(1 - \lambda\right)\left(2 - \lambda\right) - 4\left(3\right) &= 0\\ \implies \lambda^2 - 3\lambda + 2 - 12 &= 0\\ \implies \lambda^2 -3\lambda -10 &= 0\\ \implies \left(\lambda - 5\right)\left(\lambda + 2\right) &= 0 \end{align*}\]
This means that \(\lambda = 5\) and \(\lambda = -2\) are the eigenvalues of the matrix \(A\).
Once we know the eigenvalues of a matrix, we are prepared to find the corresponding eigenvectors.
We saw, and practiced, how to do this in our previous discussion.
Strategy (Finding Eigenvalues): Given an \(n\times n\) matrix \(A\) and an eigenvalue \(\lambda\), we find a basis for the eigenspace corresponding to \(\lambda\) by solving \(\left(A - \lambda I\right)\vec{x} = \vec{0}\). That is, we find a basis for the null space of \(\left(A - \lambda I\right)\).
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right] \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right] \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right]\\ &\substack{R_2\leftarrow R_2 + \left(-1\right)R_1\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 0 & 0 & 0\end{array}\right] \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right]\\ &\substack{R_2\leftarrow R_2 + \left(-1\right)R_1\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 0 & 0 & 0\end{array}\right] \end{align}\]
The top row of the matrix indicates \(x_1 + x_2 = 0\), so \(x_1 = -x_2\).
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right]\\ &\substack{R_2\leftarrow R_2 + \left(-1\right)R_1\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 0 & 0 & 0\end{array}\right] \end{align}\]
The top row of the matrix indicates \(x_1 + x_2 = 0\), so \(x_1 = -x_2\).
\[\begin{align} \vec{x} &= \begin{bmatrix} x_1\\ x_2\end{bmatrix} \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right]\\ &\substack{R_2\leftarrow R_2 + \left(-1\right)R_1\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 0 & 0 & 0\end{array}\right] \end{align}\]
The top row of the matrix indicates \(x_1 + x_2 = 0\), so \(x_1 = -x_2\).
\[\begin{align} \vec{x} &= \begin{bmatrix} x_1\\ x_2\end{bmatrix}\\ &= \begin{bmatrix} -x_2\\ x_2\end{bmatrix} \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right]\\ &\substack{R_2\leftarrow R_2 + \left(-1\right)R_1\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 0 & 0 & 0\end{array}\right] \end{align}\]
The top row of the matrix indicates \(x_1 + x_2 = 0\), so \(x_1 = -x_2\).
\[\begin{align} \vec{x} &= \begin{bmatrix} x_1\\ x_2\end{bmatrix}\\ &= \begin{bmatrix} -x_2\\ x_2\end{bmatrix}\\ &= x_2\begin{bmatrix} -1\\ 1\end{bmatrix} \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_1 = 5\). Find a basis for \(E_{\lambda = 5}\), the eigenspace corresponding to \(\lambda = 5\).
We need to solve matrix equation \(\left(A - 5I\right)\vec{x} = \vec{0}\) by first setting up an augmented matrix.
\[\begin{align} \left[\begin{array}{rr|r} 1 - 5 & 4 & 0\\ 3 & 2 - 5 & 0\end{array}\right] &= \left[\begin{array}{rr|r} -4 & 4 & 0\\ 3 & -3 & 0\end{array}\right]\\ &\substack{R_1 \leftarrow \left(-\frac{1}{4}\right)R_1\\ R_2\leftarrow \left(\frac{1}{3}\right)R_2\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 1 & 1 & 0\end{array}\right]\\ &\substack{R_2\leftarrow R_2 + \left(-1\right)R_1\\ \longrightarrow} \left[\begin{array}{rr|r} 1 & 1 & 0\\ 0 & 0 & 0\end{array}\right] \end{align}\]
So \(\mathscr{B}_{E_{\lambda = 5}} = \left\{\begin{bmatrix} -1\\ 1\end{bmatrix}\right\}\)
The top row of the matrix indicates \(x_1 + x_2 = 0\), so \(x_1 = -x_2\).
\[\begin{align} \vec{x} &= \begin{bmatrix} x_1\\ x_2\end{bmatrix}\\ &= \begin{bmatrix} -x_2\\ x_2\end{bmatrix}\\ &= x_2\begin{bmatrix} -1\\ 1\end{bmatrix} \end{align}\]
Example: Recall that the matrix \(A = \begin{bmatrix} 1 & 4\\ 3 & 2\end{bmatrix}\) has eigenvalue \(\lambda_2 = -2\). Find a basis for \(E_{\lambda = -2}\), the eigenspace corresponding to \(\lambda = -2\).
Effects of Row-Reduction on Determinants: Given an \(n\times n\) matrix \(A\),
Remark (Determinants of Row-Equivalent Matrices): If the operation of scaling rows is avoiding in transforming the matrix \(A\) into the row-equivalent echelon-form matrix \(U\), then we have
\[\det\left(A\right) = \left\{\begin{array}{ll} \left(-1\right)^r\cdot\left(\substack{\text{product of pivots}\\ \text{in U}}\right), &\text{ when $A$ is invertible}\\ 0, & \text{ when $A$ is not invertible} \end{array}\right.\]
Effects of Row-Reduction on Determinants: Given an \(n\times n\) matrix \(A\),
Remark (Determinants of Row-Equivalent Matrices): If the operation of scaling rows is avoiding in transforming the matrix \(A\) into the row-equivalent echelon-form matrix \(U\), then we have
\[\det\left(A\right) = \left\{\begin{array}{ll} \left(-1\right)^r\cdot\left(\substack{\text{product of pivots}\\ \text{in U}}\right), &\text{ when $A$ is invertible}\\ 0, & \text{ when $A$ is not invertible} \end{array}\right.\]
where \(r\) is the number of row interchanges.
Remark (Determinants of Row-Equivalent Matrices): If the operation of scaling rows is avoiding in transforming the matrix \(A\) into the row-equivalent echelon-form matrix \(U\), then we have
\[\det\left(A\right) = \left\{\begin{array}{ll} \left(-1\right)^r\cdot\left(\substack{\text{product of pivots}\\ \text{in U}}\right), &\text{ when $A$ is invertible}\\ 0, & \text{ when $A$ is not invertible} \end{array}\right.\]
where \(r\) is the number of row interchanges.
This is great news, because row reduction will not change the solutions to the characteristic equation \(\text{det}\left(A - \lambda I\right) = 0\)
We can row-reduce \(\left(A - \lambda I\right)\) quickly (in comparison) and then calculate the characteristic polynomial as the product of the pivots in the equivalent row-echelon form matrix.
Comment: The largest, non-triangular, matrices we’ll work with in MAT350 are \(3\times 3\).
We can use Python to find and solve the characteristic polynomial, or even to directly compute the eigenvalues and eigenvectors of a given square matrix, \(A\).
A
as a Matrix()
using {sympy}
.charpoly()
method on A
to obtain the characteristic polynomial.as_expr()
method on the object containing the characteristic polynomial, to it into a symbolic expression.factor()
method on the object containing your symbolic expression, to obtain your factored characteristic polynomialFrom here, you can identify the solutions by finding the roots of the characteristic polynomial (that is, setting it equal to \(0\) and solving).
You can also compute the eigenvalues and eigenvectors directly from the matrix object by using the .eigenvects()
method on the matrix object.
The result is a tuple with a three item “compartment” for each eigenvalue.
Note: We’ll show the code required for both the longer and shorter methods with an example next.
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
We’ll start by defining the matrix \(A\) using {sympy}
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
Now we’ll obtain the characteristic polynomial using the .charpoly()
method.
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
Next we convert the charactristic polynomial into a variable expression and factor it.
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
A = sp.Matrix([[1, -3, 1], [-4, 8, -5], [-8, 17, -10]])
A_char_poly = A.charpoly()
A_char_poly = A_char_poly.as_expr()
A_char_poly_factored = sp.factor(A_char_poly)
print(A_char_poly_factored)
(lambda - 1)*(lambda + 1)**2
The eigenvalues are \(\lambda_1 = 1\) with multiplicity \(1\), and \(\lambda_2 = -1\) with a multiplicity of \(2\).
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
A = sp.Matrix([[1, -3, 1], [-4, 8, -5], [-8, 17, -10]])
A_char_poly = A.charpoly()
A_char_poly = A_char_poly.as_expr()
A_char_poly_factored = sp.factor(A_char_poly)
print(A_char_poly_factored)
(lambda - 1)*(lambda + 1)**2
From here, we could construct the individual \(\left[\begin{array}{r|r} \left(A - \lambda I\right) & 0\end{array}\right]\) matrices, row-reduce, write the parametric solutions, and obtain the bases. Or…
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
we could just simply use the .eigenvects()
method on the matrix to obtain the eigenvalues, multiplicities, and bases immediately from the matrix A
.
Here, the result is a list of two tuples. Each entry containing (in order), the eigenvalue, its multiplicity, and an basis for the eigenspace.
Example: Consider the matrix
\[A = \begin{bmatrix} 1 & -3 & 1\\ -4 & 8 & -5\\ -8 & 17 & -10 \end{bmatrix}\]
Complete the following:
We could also print the results more conveniently.
A = sp.Matrix([[1, -3, 1], [-4, 8, -5], [-8, 17, -10]])
A_eig = A.eigenvects()
for i in range(len(A_eig)):
print(f"Eigenvalue: {A_eig[i][0]}")
print(f"Multiplicity: {A_eig[i][1]}")
print(f"Dimension of eigenspace: {len(A_eig[i][2])}")
for j in range(len(A_eig[i][2])):
print(f"eigenbasis vector {j + 1} \n\t{A_eig[i][2][j]}")
print()
Eigenvalue: -1
Multiplicity: 2
Dimension of eigenspace: 1
eigenbasis vector 1
Matrix([[1], [1], [1]])
Eigenvalue: 1
Multiplicity: 1
Dimension of eigenspace: 1
eigenbasis vector 1
Matrix([[-2/3], [1/3], [1]])
Note that (as with many of the concepts from this course) you should be able to find eigenvalues and eigenvectors by hand but, once you are satisfied that you’ve mastered that skill, feel free to switch over to using python.
Example 1: Find the characteristic polynomial and the real eigenvalues for the matrix \(A = \left[\begin{array}{rr} 8 & 2\\ 3 & 3\end{array}\right]\)
Example 2: Find the characteristic polynomial and the real eigenvalues for the matrix \(A = \left[\begin{array}{rr} 6 & 2\\ -4 & -2\end{array}\right]\).
Example 3: Find the characteristic polynomial and the real eigenvalues of the matrix \(A = \left[\begin{array}{rrr} -1 & 0 & 2\\ 3 & 1 & 0\\ 0 & 1 & 2\end{array}\right]\).
Example 4: Find the characteristic polynomial and real eigenvalues of the matrix \(A = \left[\begin{array}{rrr} 4 & 0 & -1\\ -1 & 0 & 4\\ 0 & 2 & 3\end{array}\right]\).
Example 5: Find the real eigenvalues and their multiplicities for the matrix \(A = \left[\begin{array}{rrrr} 3 & 0 & 0 & 0\\ 6 & 2 & 0 & 0\\ 0 & 3 & 6 & 0\\ 2 & 3 & 3 & -5\end{array}\right]\).
Application 1: Consider the transition matrix \(A = \left[\begin{array}{rr} 0.94 & 0.45\\ 0.06 & 0.55\end{array}\right]\) which describes transition probabilities between the states \(\tt{Healthy}\) and \(\tt{Sick}\) as in the state vector \(\vec{x} = \left[\begin{array}{c} \tt{Healthy}\\ \tt{Sick}\end{array}\right]\) for a particular virus spreading in an elementary school classroom.
Analyze the long-term behavior of the system \(\vec{x_{k+1}} = A\vec{x_k}\) for a classroom where \(\vec{x_0} = \left[\begin{array}{r} 0.87\\ 0.13\end{array}\right]\) by completing the following steps.
\[\Huge{\text{Finish Homework 11}}\] \[\Huge{\text{on MyOpenMath}}\]
\(\Huge{\text{Exam Week}}\)
Comments on the Characteristic Equation
When we first discussed determinants, we mentioned that computing the determinant of a generic \(n\times n\) matrix takes \(O\left(n!\right)\) time.
The fact that our characteristic equation depends on calculating a determinant then, is not excellent news.
We did see, though, that taking the determinant of a triangular matrix was simple – its the product of the elements along the diagonal.
We can use row-reduction to turn a general \(n\times n\) matrix into an \(n\times n\) upper triangular matrix in just \(O\left(n^3\right)\) time.
From there, we can easily compute the determinant.
Unfortunately, row reduction operations change the determinant…
but they do so in small, predictable ways!