August 13, 2025
Complete the following warm-up problems to re-familiarize yourself with concepts we’ll be leveraging today.
Example: Determine whether the vectors \(\vec{v_1} = \left[\begin{array}{r} 2\\ 1\\ -1\end{array}\right]\), \(\vec{v_2} = \left[\begin{array}{r} 1\\ 1\\ 0\end{array}\right]\), and \(\vec{v_3} = \left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right]\) are linearly independent.
Example: Construct the inverse of the matrix \(A = \left[\begin{array}{rrr} 1 & 5 & 2\\ 0 & -1 & 3\\ 1 & 0 & 1\end{array}\right]\) if it exists.
The space \(\mathbb{R}^n\) is the space consisting of all \(n\)-component vectors whose entries are real numbers.
The zero vector (\(\vec{0}\)) is a vector whose entries are all \(0\)’s.
The span of a set of vectors, \(\text{span}\left(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\right)\) is the set of all linear combinations of the vectors \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\).
A basis for a space is a linearly independent collection of vectors which span the space.
The vector \(\vec{y}\) is a linear combination of the vectors \(V = \left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\) if \(\vec{y}\) can be written as a linear combination of the vectors in \(V\).
Goals for Today: After today’s discussion, you should be able to
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Note: Items (2.) and (3.) in the definition above are often described as the subspace being closed under addition and scalar multiplication.
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} \vec{x} + \vec{y} \end{align*}\]
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} \vec{x} + \vec{y} &= c_1\left[\begin{array}{r} 1\\ -3\end{array}\right] + c_2\left[\begin{array}{r} 1\\ -3\end{array}\right] \end{align*}\]
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} \vec{x} + \vec{y} &= c_1\left[\begin{array}{r} 1\\ -3\end{array}\right] + c_2\left[\begin{array}{r} 1\\ -3\end{array}\right] = \left(c_1 + c_2\right)\left[\begin{array}{r} 1\\ -3\end{array}\right] \end{align*}\]
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} \vec{x} + \vec{y} &= c_1\left[\begin{array}{r} 1\\ -3\end{array}\right] + c_2\left[\begin{array}{r} 1\\ -3\end{array}\right] = \left(c_1 + c_2\right)\left[\begin{array}{r} 1\\ -3\end{array}\right] \end{align*}\]
But \(c_1 + c_2\) is just another scalar, which we can call \(c_3\), so \(\vec{x} + \vec{y}\in H~\checkmark\)
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} c\vec{v} \end{align*}\]
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} c\vec{v} &= c\left(c_1\begin{bmatrix} 1\\ -3\end{bmatrix}\right) \end{align*}\]
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} c\vec{v} &= c\left(c_1\begin{bmatrix} 1\\ -3\end{bmatrix}\right) = \left(c\cdot c_1\right)\begin{bmatrix} 1\\ -3\end{bmatrix} \end{align*}\]
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
\[\begin{align*} c\vec{v} &= c\left(c_1\begin{bmatrix} 1\\ -3\end{bmatrix}\right) = \left(c\cdot c_1\right)\begin{bmatrix} 1\\ -3\end{bmatrix} \end{align*}\]
But \(c\cdot c_1\) is just another scalar, which we can call \(c_2\), so \(c\vec{v}\in H~\checkmark\)
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
Definition (Subspace Criteria): A subspace of \(\mathbb{R}^n\) is any set \(H\) in \(\mathbb{R}^n\) satisfying all of the following properties.
Example: Show that \(H = \text{span}\left(\left\{\left[\begin{array}{r} 1\\ -3\end{array}\right]\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
We’ll need to show that \(H\) satisfies the three requirements in the definition.
So \(H = \text{span}\left(\left\{\begin{bmatrix} 1\\ -3\end{bmatrix}\right\}\right)\) is a subspace of \(\mathbb{R}^2\).
Definition (Column Space): The column space corresponding to the matrix \(A\), denoted by \(\text{col}\left(A\right)\) is the set of all linear combinations of the columns of \(A\). That is, \(\text{col}\left(A\right) = \text{span}\left(\left\{\vec{a_1}, \vec{a_2}, \cdots, \vec{a_n}\right\}\right)\) where \(\vec{a_i}\) is the \(i^{th}\) column of the matrix \(A\).
Theorem (Column Space is a Subspace): If \(A\) is an \(m\times n\) matrix, then \(\text{col}\left(A\right)\) is a subspace of \(\mathbb{R}^m\).
Theorem (Basis for \(\text{col}\left(A\right)\)): The pivot columns of \(A\) form a basis for \(\text{col}\left(A\right)\).
An Important Note: In the Theorem listed above, it is important that we use pivot columns of the original matrix \(A\) as a basis for its column space. Often times the pivot columns of a row reduced version of \(A\) will not span \(\text{col}\left(A\right)\).
Example (Basis for Column Space): Find a basis for the column space of the matrix \(A = \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right]\).
We’ll need to identify the pivot columns in the matrix \(A\).
\[\begin{align*} \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right] \end{align*}\]
Example (Basis for Column Space): Find a basis for the column space of the matrix \(A = \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right]\).
We’ll need to identify the pivot columns in the matrix \(A\).
\[\begin{align*} \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + R_1\\ \longrightarrow} \left[\begin{array}{rrr} 1 & 3 & -2\\ 0 & 4 & 3\\ 0 & 4 & 3\end{array}\right] \end{align*}\]
Example (Basis for Column Space): Find a basis for the column space of the matrix \(A = \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right]\).
We’ll need to identify the pivot columns in the matrix \(A\).
\[\begin{align*} \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + R_1\\ \longrightarrow} \left[\begin{array}{rrr} 1 & 3 & -2\\ 0 & 4 & 3\\ 0 & 4 & 3\end{array}\right]\\ \substack{R_3 \leftarrow R_3 + (-1R_2)\\ \longrightarrow} \left[\begin{array}{rrr} 1 & 3 & -2\\ 0 & 4 & 3\\ 0 & 0 & 0\end{array}\right] \end{align*}\]
Example (Basis for Column Space): Find a basis for the column space of the matrix \(A = \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right]\).
We’ll need to identify the pivot columns in the matrix \(A\).
\[\begin{align*} \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + R_1\\ \longrightarrow} \left[\begin{array}{rrr} 1 & 3 & -2\\ 0 & 4 & 3\\ 0 & 4 & 3\end{array}\right]\\ \substack{R_3 \leftarrow R_3 + (-1R_2)\\ \longrightarrow} \left[\begin{array}{rrr} \boxed{~1~} & 3 & -2\\ 0 & \boxed{~4~} & 3\\ 0 & 0 & 0\end{array}\right] \end{align*}\]
The first two columns of \(A\) are pivot columns.
Example (Basis for Column Space): Find a basis for the column space of the matrix \(A = \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right]\).
We’ll need to identify the pivot columns in the matrix \(A\).
\[\begin{align*} \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + R_1\\ \longrightarrow} \left[\begin{array}{rrr} 1 & 3 & -2\\ 0 & 4 & 3\\ 0 & 4 & 3\end{array}\right]\\ \substack{R_3 \leftarrow R_3 + (-1R_2)\\ \longrightarrow} \left[\begin{array}{rrr} \boxed{~1~} & 3 & -2\\ 0 & \boxed{~4~} & 3\\ 0 & 0 & 0\end{array}\right] \end{align*}\]
The first two columns of \(A\) are pivot columns.
A basis for \(\text{Col}\left(A\right)\) is
Example (Basis for Column Space): Find a basis for the column space of the matrix \(A = \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right]\).
We’ll need to identify the pivot columns in the matrix \(A\).
\[\begin{align*} \left[\begin{array}{rrr} 1 & 3 & -2\\ -1 & 1 & 5\\ 0 & 4 & 3\end{array}\right] \substack{R_2 \leftarrow R_2 + R_1\\ \longrightarrow} \left[\begin{array}{rrr} 1 & 3 & -2\\ 0 & 4 & 3\\ 0 & 4 & 3\end{array}\right]\\ \substack{R_3 \leftarrow R_3 + (-1R_2)\\ \longrightarrow} \left[\begin{array}{rrr} \boxed{~1~} & 3 & -2\\ 0 & \boxed{~4~} & 3\\ 0 & 0 & 0\end{array}\right] \end{align*}\]
The first two columns of \(A\) are pivot columns.
A basis for \(\text{Col}\left(A\right)\) is
\[\mathscr{B}_{\text{Col}} = \left\{\begin{bmatrix} 1\\ -1\\ 0\end{bmatrix}, \begin{bmatrix} 3\\ 1\\ 4\end{bmatrix}\right\}\]
Definition (Null Space): The null space of a matrix \(A\) is denoted by \(\text{Nul}\left(A\right)\) and is the set of all solutions to the homogeneous equation \(A\vec{x} = \vec{0}\).
Theorem (Null Space is a Subspace): For any \(m\times n\) matrix \(A\), \(\text{Nul}\left(A\right)\) is a subspace of \(\mathbb{R}^n\).
Example (Basis for Null Space): Find a basis for the null space of the matrix \(A = \left[\begin{array}{rrr} 1 & 2 & 0\\ 0 & 1 & 1\end{array}\right]\).
We’ll start by solving the homogeneous equation \(A\vec{x} = \vec{0}\).
\[\begin{align*} \left[\begin{array}{rrr|r} 1 & 2 & 0 & 0\\ 0 & 1 & 1 & 0\end{array}\right] \substack{R_1\leftarrow R_1 + (-2R2)\\ \longrightarrow} \left[\begin{array}{rrr|r} 1 & 0 & -2 & 0\\ 0 & 1 & 1 & 0\end{array}\right] \end{align*}\]
Example (Basis for Null Space): Find a basis for the null space of the matrix \(A = \left[\begin{array}{rrr} 1 & 2 & 0\\ 0 & 1 & 1\end{array}\right]\).
Since \(\vec{x} = x_3\left[\begin{array}{r} 2\\ -1\\ 1\end{array}\right]\)…
\[\mathscr{B}_{\text{Nul}\left(A\right)} = \left\{\left[\begin{array}{r} 2\\ -1\\ 1\end{array}\right]\right\}\]
We’ll close by highlighting a few important observations about the ideas and objects we’ve introduced in this notebook.
Example 1: Consider the plot on the right with solid (closed) boundary regions and assume that the shaded region extends infinitely. Determine whether the set corresponding to the shaded region (including its boundaries) is a subspace of \(\mathbb{R}^2\).
Example 2: Consider the plot to the left in which the blue line is the set \(H\). Assume that \(H\) extends infinitely in both directions. Determine whether or not \(H\) is a subspace of \(\mathbb{R}^2\).
Example 3: Consider the plot to the right in which the blue line is the set \(H\). Assume that \(H\) extends infinitely in both directions. Determine whether or not \(H\) is a subspace of \(\mathbb{R}^2\).
Example 4: Show that the null space of any \(3\times 4\) matrix \(A\) is a subspace of \(\mathbb{R}^n\) using the subspace criteria.
Example 5: Consider \(\vec{v_1} = \left[\begin{array}{r} 1\\ -3\\ 2\\ 3\end{array}\right]\), \(\vec{v_2} = \left[\begin{array}{r} 4\\ -4\\ 5\\ 7\end{array}\right]\), and \(\vec{v_3} = \left[\begin{array}{r} 5\\ -3\\ 6\\ 5\end{array}\right]\). Determine whether \(\vec{u} = \left[\begin{array}{r} -1\\ -7\\ -1\\ 2\end{array}\right]\) is in \(\text{span}\left(\left\{\vec{v_1}, \vec{v_2}, \vec{v_3}\right\}\right)\).
Example 6: Consider \(A = \left[\begin{array}{rrr} 1 & 2 & -8\\ 0 & -3 & 1\\ -1 & 1 & -1\end{array}\right]\). Determine whether \(\left[\begin{array}{r} 2\\ 3\\ 1\end{array}\right]\) is in \(\text{Nul}\left(A\right)\).
Example 7: The matrix \(A = \left[\begin{array}{rrrrr} 1 & 4 & 8 & -3 & -7\\ -1 & 2 & 7 & 3 & 4\\ -2 & 2 & 9 & 5 & 5\\ 3 & 6 & 9 & -5 & -2\end{array}\right]\) is row-equivalent the the echelon form matrix \(\left[\begin{array}{rrrrr} 1 & 4 & 8 & 0 & 5\\ 0 & 2 & 5 & 0 & -1\\ 0 & 0 & 0 & 1 & 4\\ 0 & 0 & 0 & 0 & 0\end{array}\right]\). Find a basis for \(\text{Col}\left(A\right)\) and a basis for \(\text{Nul}\left(A\right)\).
Example 8: Let \(A = \left[\begin{array}{rrr} 1 & 2 & 3\\ 2 & -1 & 1\\ 1 & 1 & 2\end{array}\right]\). Determine a basis for \(\text{Col}\left(A\right)\) and a basis for \(\text{Nul}\left(A\right)\).
\[\Huge{\text{Start Homework 11}}\] \[\Huge{\text{on MyOpenMath}}\]
\(\Huge{\text{Introduction to}}\)
\(\Huge{\text{Eigenvectors and Eigenvalues}}\)