August 9, 2025
Complete the following warm-up problems to re-familiarize yourself with concepts we’ll be leveraging today.
Compute the linear combination \(c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3}\) where \(\vec{v_1} = \begin{bmatrix} -3\\ 1\\ 5\end{bmatrix},~\vec{v_2} = \begin{bmatrix} 1\\ 1\\ -1\end{bmatrix}\), and \(\vec{v_3} = \begin{bmatrix} 0\\ 0\\ 2\end{bmatrix}\) with \(c_1 = -1\), \(c_2 =-4\), and \(c_3 = 5\).
Determine whether the vector \(\begin{bmatrix} -4\\ 3\end{bmatrix}\) is a linear combination of the vectors \(\vec{v_1} = \begin{bmatrix} 2\\ 8\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 1\end{bmatrix}\).
What must be true about all vectors which are linear combinations of the vectors \(\vec{v_1} = \begin{bmatrix} -3\\ -1\\ 0\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} 0\\ 1\\ 0\end{bmatrix}\)?
Goals for Today: By the end of class, you should be able to:
New Question: Given the collection of vectors \(\vec{v_1},~\vec{v_2},~\vdots,~\vec{v_p}\), “what types of vectors can be written as linear combinations of the vectors in my collection?”
Definition (Span of a Collection of Vectors): Given some collection of vectors \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\) from \(\mathbb{R}^n\), the set of all linear combinations of these vectors is called its span and is denoted by \(\text{span}\left(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\right)\).
Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{r} -15\\ -1\\ -7\end{array}\right]\) is in \(\text{span}\left(\left\{\left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right], \left[\begin{array}{r} -3\\ 2\\ -1\end{array}\right]\right\}\right)\).
Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{r} -15\\ -1\\ -7\end{array}\right]\) is in \(\text{span}\left(\left\{\left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right], \left[\begin{array}{r} -3\\ 2\\ -1\end{array}\right]\right\}\right)\).
Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{r} -15\\ -1\\ -7\end{array}\right]\) is in \(\text{span}\left(\left\{\left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right], \left[\begin{array}{r} -3\\ 2\\ -1\end{array}\right]\right\}\right)\).
So \(c_1 = -3\) and \(c_2 = 4\), and \(\begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) is in \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix}, \begin{bmatrix} -3\\ 2\\ -1\end{bmatrix}\right\}\right)~~_{\blacktriangledown}\)
Example: Is the vector \(\vec{b} = \left[\begin{array}{c}1\\ 5\\ 3\end{array}\right]\) in \(\text{span}\left(\left\{\left[\begin{array}{c} 1\\ 1\\ 0\end{array}\right], \left[\begin{array}{c} 0\\ 1\\ 1\end{array}\right]\right\}\right)\)?
The question of what space a set of vectors span is quite an interesting one.
Check out this “applet”.
We’ve seen examples of pairs of vectors from \(\mathbb{R}^2\) that span \(\mathbb{R}^2\) and others that don’t.
So, when do two vectors from \(\mathbb{R}^2\) actually span all of \(\mathbb{R}^2\)?
More generally, when does a collection of vectors from \(\mathbb{R}^m\) span all of \(\mathbb{R}^m\)?
Equivalent Statements: The following statements are equivalent.
Example: Determine whether the collection of vectors \(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}, \begin{bmatrix} 1\\ 1\\ -1\end{bmatrix}\right\}\) spans \(\mathbb{R}^3\)
Even if a collection of vectors \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\) does not span all of \(\mathbb{R}^m\), it is possible to describe the subset of \(\mathbb{R}^m\) that is spanned by the collection.
\[\left[\begin{array}{cccc|c} v_{11} & v_{12} & \cdots & v_{1p} & b_1\\ v_{12} & v_{22} & \cdots & v_{2p} & b_2\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ v_{1m} & v_{m2} & \cdots & v_{mp} & b_m\end{array}\right]\]
All vectors \(\vec{b}\) such that the right-most column is not a pivot column are in the span of the collection of vectors.
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] \end{align}\]
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\stackrel{R_3 \leftarrow R_3 + R_1}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right] \end{align}\]
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\stackrel{R_3 \leftarrow R_3 + R_1}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right]\\ &\stackrel{R_2 \leftarrow \frac{-1}{2}R_2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right] \end{align}\]
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right] \end{align}\]
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right]\\ &\stackrel{R_3 \leftarrow R_3 + (-13)R_2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]
There is a pivot in the rightmost column of the augmented coefficient matrix unless \(b_1 + b_3 + \frac{13}{2}b_2 = 0\).
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]
The system is consistent for any vector \(\vec{b} = \begin{bmatrix} b_1\\ b_2\\ b_3\end{bmatrix}\) in \(\mathbb{R}^3\) as long as \(b_3 = -b_1 - \frac{13}{2}b_2\).
This restriction defines a plane in \(\mathbb{R}^3\). \(~~_{\blacktriangledown}\)
Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)
\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]
The approach taken here isn’t actually how we’ll answer this question in the future.
There is an easier way, but it requires a bit more background than we currently have.
Example: Determine what geometric object is spanned by the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 2\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} 2\\ 4\end{bmatrix}\).
Example: Is the vector \(\vec{b} = \begin{bmatrix} 2\\ 1\\ 9\end{bmatrix}\) in the span of the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 0\\ 2\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 1\\ 3\end{bmatrix}\)?
Example: Can the set of vectors \(\left\{\begin{bmatrix} 1\\ 0\\ 0\\ 0\end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1\\ 1\end{bmatrix}\right\}\) span all of \(\mathbb{R}^4\)? Why or why not?
Example: Determine the span of the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 1\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 2\end{bmatrix}\). Would the span change if we included a third vector \(\vec{v_3} = \begin{bmatrix} 2\\ 3\end{bmatrix}\)? Why or why not?
To be added…
\[\Huge{\text{Start Homework 5}}\] \[\Huge{\text{on MyOpenMath}}\]
\(\Huge{\text{Linear Independence}}\)