MAT 350: Spans of Collections of Vectors

Dr. Gilbert

October 6, 2025

Warm-Up Problems

Complete the following warm-up problems to re-familiarize yourself with concepts we’ll be leveraging today.

  1. Compute the linear combination \(c_1\vec{v_1} + c_2\vec{v_2} + c_3\vec{v_3}\) where \(\vec{v_1} = \begin{bmatrix} -3\\ 1\\ 5\end{bmatrix},~\vec{v_2} = \begin{bmatrix} 1\\ 1\\ -1\end{bmatrix}\), and \(\vec{v_3} = \begin{bmatrix} 0\\ 0\\ 2\end{bmatrix}\) with \(c_1 = -1\), \(c_2 =-4\), and \(c_3 = 5\).

  2. Determine whether the vector \(\begin{bmatrix} -4\\ 3\end{bmatrix}\) is a linear combination of the vectors \(\vec{v_1} = \begin{bmatrix} 2\\ 8\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 1\end{bmatrix}\).

  3. What must be true about all vectors which are linear combinations of the vectors \(\vec{v_1} = \begin{bmatrix} -3\\ -1\\ 0\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} 0\\ 1\\ 0\end{bmatrix}\)?

  4. Solve the matrix equation \(A\vec{x} = \vec{0}\), where \(A = \begin{bmatrix} 1 & 2 & 0 & 1 & -3\\ 0 & 0 & 1 & -4 & 6\\ 1 & 2 & 1 & -3 & 3 \end{bmatrix}\). Write the solution in parametric vector form and describe the solution space.

Reminders and Today’s Goal

  • A linear combination of vectors \(\vec{v_1}, \vec{v_2}, \dots, \vec{v_k}\) is any vector that can be written as
    \(\quad \vec{y} = c_1\vec{v_1} + c_2\vec{v_2} + \dots + c_k\vec{v_k}\)
    where \(c_1, c_2, \dots, c_k\) are scalars.
  • Linear combinations let us “move” through space by scaling and adding given vectors.
  • Our set of available vectors determines which parts of \(\mathbb{R}^n\) we can reach.

Goals for Today: By the end of class, you should be able to:

  • Define the span of a collection of vectors.
  • Decide whether a given vector \(\vec{b}\) is in the span of a set of vectors.
  • Describe the geometry of the span in \(\mathbb{R}^n\) (point, line, plane, …).

Motivating the Span

  • We’ve spent our last two meetings focused on linear combinations of vectors.
  • Again, a vector \(\vec{y}\) can be written as a linear combination of the vectors \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\) if there exist scalars \(c_1,~c_2,~\cdots,~c_p\) such that \(c_1\vec{v_1} + c_2\vec{v_2} + \cdots + c_p\vec{v_p} = \vec{y}\).

New Question: Given the collection of vectors \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\), “what types of vectors can be written as linear combinations of the vectors in my collection?

  • This is similar to what was asked in the third warm-up problem in this notebook.
  • That is the question we’ll focus on in this notebook.

Spans of Vectors

Definition (Span of a Collection of Vectors): Given some collection of vectors \(\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\) from \(\mathbb{R}^n\), the set of all linear combinations of these vectors is called its span and is denoted by \(\text{span}\left(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\right)\).

Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{r} -15\\ -1\\ -7\end{array}\right]\) is in \(\text{span}\left(\left\{\left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right], \left[\begin{array}{r} -3\\ 2\\ -1\end{array}\right]\right\}\right)\).

  • We are searching for \(c_1\) and \(c_2\) such that \(c_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + c_2\begin{bmatrix} -3\\ 2\\ -1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\)
  • We construct an augmented matrix whose first two columns are the vectors whose span we are interested in, and whose augmented column is the vector \(\vec{b}\)

Spans of Vectors

Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{r} -15\\ -1\\ -7\end{array}\right]\) is in \(\text{span}\left(\left\{\left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right], \left[\begin{array}{r} -3\\ 2\\ -1\end{array}\right]\right\}\right)\).

  • We are searching for \(c_1\) and \(c_2\) such that \(c_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + c_2\begin{bmatrix} -3\\ 2\\ -1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\)
  • We construct an augmented matrix whose first two columns are the vectors whose span we are interested in, and whose augmented column is the vector \(\vec{b}\)
import sympy as sp

A = sp.Matrix([[1.0, -3, -15], 
              [3, 2, -1], 
              [1, -1, -7]])
A.rref()
(Matrix([
[1, 0, -3.0],
[0, 1,  4.0],
[0, 0,    0]]), (0, 1))

Spans of Vectors

Example: Determine whether the vector \(\vec{b} = \left[\begin{array}{r} -15\\ -1\\ -7\end{array}\right]\) is in \(\text{span}\left(\left\{\left[\begin{array}{r} 1\\ 3\\ 1\end{array}\right], \left[\begin{array}{r} -3\\ 2\\ -1\end{array}\right]\right\}\right)\).

  • We are searching for \(c_1\) and \(c_2\) such that \(c_1\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix} + c_2\begin{bmatrix} -3\\ 2\\ -1\end{bmatrix} = \begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\)
  • We construct an augmented matrix whose first two columns are the vectors whose span we are interested in, and whose augmented column is the vector \(\vec{b}\)
import sympy as sp

A = sp.Matrix([[1.0, -3, -15], 
              [3, 2, -1],
              [1, -1, -7]])
A.rref()
(Matrix([
[1, 0, -3.0],
[0, 1,  4.0],
[0, 0,    0]]), (0, 1))

So \(c_1 = -3\) and \(c_2 = 4\), and \(\begin{bmatrix} -15\\ -1\\ -7\end{bmatrix}\) is in \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 3\\ 1\end{bmatrix}, \begin{bmatrix} -3\\ 2\\ -1\end{bmatrix}\right\}\right)~~_{\blacktriangledown}\)

Example to Try #1

Example: Is the vector \(\vec{b} = \left[\begin{array}{c}1\\ 5\\ 3\end{array}\right]\) in \(\text{span}\left(\left\{\left[\begin{array}{c} 1\\ 1\\ 0\end{array}\right], \left[\begin{array}{c} 0\\ 1\\ 1\end{array}\right]\right\}\right)\)?

Interesting Questions Around Spans

The question of what space a set of vectors span is quite an interesting one.

  • For example, do the vectors \(\vec{v_1} = \left[\begin{array}{c} 2\\ 3\end{array}\right]\) and \(\vec{v_2} = \left[\begin{array}{c}4\\ 6\end{array}\right]\) span all of \(\mathbb{R}^2\)?
  • This question amounts to asking which points in \(\mathbb{R}^2\) can be arrived at by taking scaled steps in the direction of \(\vec{v_1}\) and \(\vec{v_2}\).

Check out this “applet”.

When do Vectors Span an Entire Space?

  • We’ve seen examples of pairs of vectors from \(\mathbb{R}^2\) that span \(\mathbb{R}^2\) and others that don’t.

    • In the latter case, there were some vectors (locations in \(\mathbb{R}^2\) which could not be reached using steps only in the directions of the two vectors being investigated).
  • So, when do two vectors from \(\mathbb{R}^2\) actually span all of \(\mathbb{R}^2\)?

  • More generally, when does a collection of vectors from \(\mathbb{R}^m\) span all of \(\mathbb{R}^m\)?

When do Vectors Span and Entire Space?

Equivalent Statements: The following statements are equivalent.

  1. The collection of vectors \(\left\{\vec{v_1}, \vec{v_2}, \cdots, \vec{v_p}\right\}\) spans \(\mathbb{R}^m\).
  2. The vector equation \(x_1\vec{v_1} + x_2\vec{v_2} + \cdots + x_p\vec{v_p} = \vec{b}\) has a solution for every \(\vec{b} \in\mathbb{R}^m\).
  3. The matrix equation \(\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_p}\end{bmatrix}\vec{x} = \vec{b}\) has a solution for every \(\vec{b}\in\mathbb{R}^m\).
  4. The matrix \(\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_p}\end{bmatrix}\) has a pivot in every row, making it impossible for the augmented matrix \(\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_p} & | & \vec{b}\end{bmatrix}\) to have a pivot in its rightmost column.
  5. The linear system \(\left\{\begin{array}{rcr} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n & = & b_1\\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n & = & b_2\\ & \vdots & \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n & = & b_n\end{array}\right.\) is consistent for all choices of \(b_1,~b_2,~\cdots,~b_n\).

When do Vectors Span an Entire Space? Example to Try #2

Example: Determine whether the collection of vectors \(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}, \begin{bmatrix} 1\\ 1\\ -1\end{bmatrix}\right\}\) spans \(\mathbb{R}^3\)

Describing the Space Spanned

  • Even if a collection of vectors \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\) does not span all of \(\mathbb{R}^m\), it is possible to describe the subset of \(\mathbb{R}^m\) that is spanned by the collection.

    • Solve the matrix equation \(\begin{bmatrix} \vec{v_1} & \vec{v_2} & \cdots & \vec{v_p}\end{bmatrix} \vec{x} = \vec{b}\) for an arbitrary \(\vec{b}\in \mathbb{R}^m\). That is, we row-reduce the following augmented matrix

\[\left[\begin{array}{cccc|c} v_{11} & v_{12} & \cdots & v_{1p} & b_1\\ v_{12} & v_{22} & \cdots & v_{2p} & b_2\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ v_{1m} & v_{m2} & \cdots & v_{mp} & b_m\end{array}\right]\]

  • All vectors \(\vec{b}\) such that the right-most column is not a pivot column are in the span of the collection of vectors.

    • Identifying the requirements for preventing the pivot will shed light on the vectors \(\vec{b}\in\mathbb{R}^m\) which are spanned by \(\left\{\vec{v_1},~\vec{v_2},~\cdots,~\vec{v_p}\right\}\)

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] \end{align}\]

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\stackrel{R_3 \leftarrow R_3 + R_1}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right] \end{align}\]

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\stackrel{R_3 \leftarrow R_3 + R_1}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right]\\ &\stackrel{R_2 \leftarrow \frac{-1}{2}R_2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right] \end{align}\]

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right] \end{align}\]

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 13 & 13 & b_1 + b_3\end{array}\right]\\ &\stackrel{R_3 \leftarrow R_3 + (-13)R_2}{\longrightarrow} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]

There is a pivot in the rightmost column of the augmented coefficient matrix unless \(b_1 + b_3 + \frac{13}{2}b_2 = 0\).

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]

The system is consistent for any vector \(\vec{b} = \begin{bmatrix} b_1\\ b_2\\ b_3\end{bmatrix}\) in \(\mathbb{R}^3\) as long as \(b_3 = -b_1 - \frac{13}{2}b_2\).

This restriction defines a plane in \(\mathbb{R}^3\). \(~~_{\blacktriangledown}\)

Describing the Space Spanned: Example

Example: Describe \(\text{span}\left(\left\{\begin{bmatrix} 1\\ 0\\ -1\end{bmatrix}, \begin{bmatrix} 5\\ -2\\ 8\end{bmatrix}, \begin{bmatrix} 7\\ -2\\ 6\end{bmatrix}\right\}\right)\)

\[\begin{align} \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & -2 & -2 & b_2\\ -1 & 8 & 6 & b_3\end{array}\right] &\sim \left[\begin{array}{ccc|c} 1 & 5 & 7 & b_1\\ 0 & 1 & 1 & \frac{-1}{2}b_2\\ 0 & 0 & 0 & b_1 + b_3 + \frac{13}{2}b_2\end{array}\right] \end{align}\]

The approach taken here isn’t actually how we’ll answer this question in the future.

There is an easier way, but it requires a bit more background than we currently have.

Example to Try #3

Example: Determine what geometric object is spanned by the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 2\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} 2\\ 4\end{bmatrix}\).

Example to Try #4

Example: Is the vector \(\vec{b} = \begin{bmatrix} 2\\ 1\\ 9\end{bmatrix}\) in the span of the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 0\\ 2\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 1\\ 3\end{bmatrix}\)?

Example to Try #5

Example: Can the set of vectors \(\left\{\begin{bmatrix} 1\\ 0\\ 0\\ 0\end{bmatrix}, \begin{bmatrix} 0\\ 1\\ 0\\ 0\end{bmatrix}, \begin{bmatrix} 1\\ 1\\ 1\\ 1\end{bmatrix}\right\}\) span all of \(\mathbb{R}^4\)? Why or why not?

Example to Try #6

Example: Determine the span of the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 1\end{bmatrix}\) and \(\vec{v_2} = \begin{bmatrix} -1\\ 2\end{bmatrix}\). Would the span change if we included a third vector \(\vec{v_3} = \begin{bmatrix} 2\\ 3\end{bmatrix}\)? Why or why not?

Exit Ticket Task

Navigate to our MAT350 Exit Ticket Form, answer the questions, and complete the task below.


Note. Today’s discussion is listed as 10. The Span of a Set of Vectors


Task: Consider the vectors \(\vec{v_1} = \begin{bmatrix} 1\\ 0\\ 3\end{bmatrix}\), \(\vec{v_2} = \begin{bmatrix} 0\\ -2\\ 2\end{bmatrix}\), and \(\vec{v_3} = \begin{bmatrix} 1\\ 4\\ -1\end{bmatrix}\). Is the vector \(\vec{b} = \begin{bmatrix} 3\\ 3\\ -1\end{bmatrix}\) in \(\text{Span}\left(\vec{v_1}, \vec{v_2}, \vec{v_3}\right)\)?

Summary

To be added…

Homework




\[\Huge{\text{Start Homework 5}}\] \[\Huge{\text{on MyOpenMath}}\]

Next Time…




\(\Huge{\text{Linear Independence}}\)